def run_configuration(argv): params = ParameterServer() params["ML"]["BaseAgent"][ "SummaryPath"] = "/home/mansoor/Study/Werkstudent/fortiss/code/bark-ml/summaries" params["ML"]["BaseAgent"][ "CheckpointPath"] = "/home/mansoor/Study/Werkstudent/fortiss/code/bark-ml/checkpoints" env = gym.make(FLAGS.env, params=params) agent = FQFAgent(env=env, test_env=env, params=params) if FLAGS.load and params["ML"]["BaseAgent"]["CheckpointPath"]: agent.load_models( os.path.join(params["ML"]["BaseAgent"]["CheckpointPath"], "best")) if FLAGS.mode == "train": agent.train() elif FLAGS.mode == "visualize": agent.visualize() elif FLAGS.mode == "evaluate": # writes evaluaion data using summary writer in summary path agent.evaluate() else: raise Exception("Invalid argument for --mode")
def test_agent_wrapping(self): params = ParameterServer() env = gym.make("highway-v1", params=params) env.reset() # agent = IQNAgent(env=env, test_env=env, params=params) params["ML"]["BaseAgent"]["MaxEpisodeSteps"] = 2 params["ML"]["BaseAgent"]["NumEvalEpisodes"] = 2 agent = FQFAgent(env=env, params=params) agent.train_episode() agent.evaluate()
def test_agent_wrapping(self): params = ParameterServer() env = gym.make("highway-v1", params=params) env.reset() params["ML"]["BaseAgent"]["MaxEpisodeSteps"] = 2 params["ML"]["BaseAgent"]["NumEvalEpisodes"] = 2 train_bench = TrainingBenchmarkDatabase() agent = FQFAgent(env=env, agent_save_dir="./save_dir", params=params, training_benchmark=train_bench) agent.train_episode() agent.evaluate()