def train(self, sess, progress, summary_writer): heading = lambda s: utils.heading(s, '(' + self._config.model_name + ')') trained_on_sentences = 0 start_time = time.time() unsupervised_loss_total, unsupervised_loss_count = 0, 0 supervised_loss_total, supervised_loss_count = 0, 0 for mb in self._get_training_mbs(progress.unlabeled_data_reader): if mb.task_name != 'unlabeled': loss = self._model.train_labeled(sess, mb) print('train loss', loss) supervised_loss_total += loss supervised_loss_count += 1 if mb.task_name == 'unlabeled': self._model.run_teacher(sess, mb) loss = self._model.train_unlabeled(sess, mb) unsupervised_loss_total += loss unsupervised_loss_count += 1 mb.teacher_predictions.clear() trained_on_sentences += mb.size global_step = self._model.get_global_step(sess) if global_step % self._config.print_every == 0: supervised_loss_reported = supervised_loss_total / max( 1, supervised_loss_count) utils.log( 'step {:} - ' 'supervised loss: {:.3f} - ' 'unsupervised loss: {:.3f} - ' '{:.1f} sentences per second'.format( global_step, supervised_loss_reported, unsupervised_loss_total / max(1, unsupervised_loss_count), trained_on_sentences / (time.time() - start_time))) unsupervised_loss_total, unsupervised_loss_count = 0, 0 supervised_loss_total, supervised_loss_count = 0, 0 summary_writer.add_summary( tf.Summary(value=[ tf.Summary.Value(tag='loss', simple_value=supervised_loss_reported) ]), global_step) if global_step % self._config.eval_dev_every == 0: heading('EVAL ON DEV') self.evaluate_all_tasks(sess, summary_writer, progress.history) progress.save_if_best_dev_model(sess, global_step) utils.log() if global_step % self._config.eval_train_every == 0: heading('EVAL ON TRAIN') self.evaluate_all_tasks(sess, summary_writer, progress.history, True) utils.log() if global_step % self._config.save_model_every == 0: heading('CHECKPOINTING MODEL') progress.write(sess, global_step) utils.log()
def main(): utils.heading('SETUP') config = configure.Config(mode=FLAGS.mode, model_name=FLAGS.model_name) config.write() with tf.Graph().as_default() as graph: model_trainer = trainer.Trainer(config) summary_writer = tf.summary.FileWriter(config.summaries_dir) checkpoints_saver = tf.train.Saver(max_to_keep=1) best_model_saver = tf.train.Saver(max_to_keep=1) init_op = tf.global_variables_initializer() graph.finalize() with tf.Session() as sess: sess.run(init_op) progress = training_progress.TrainingProgress( config, sess, checkpoints_saver, best_model_saver, config.mode == 'train') utils.log() if config.mode == 'train': utils.heading('START TRAINING ({:})'.format(config.model_name)) model_trainer.train(sess, progress, summary_writer) elif config.mode == 'eval': utils.heading('RUN EVALUATION ({:})'.format(config.model_name)) progress.best_model_saver.restore( sess, tf.train.latest_checkpoint(config.checkpoints_dir)) model_trainer.evaluate_all_tasks(sess, summary_writer, None) else: raise ValueError('Mode must be "train" or "eval"')
def main(): utils.heading('SETUP') config = configure.Config(mode=FLAGS.mode, model_name=FLAGS.model_name) config.write() if config.mode == 'encode': word_vocab = embeddings.get_word_vocab(config) sentence = "Squirrels , for example , would show up , look for the peanut , go away .".split() sentence = ([word_vocab[embeddings.normalize_word(w)] for w in sentence]) print(sentence) return if config.mode == 'decode': word_vocab_reversed = embeddings.get_word_vocab_reversed(config) sentence = "25709 33 42 879 33 86 304 92 33 676 42 32 13406 33 273 445 34".split() sentence = ([word_vocab_reversed[int(w)] for w in sentence]) print(sentence) return if config.mode == 'encode-vi': word_vocab_vi = embeddings.get_word_vocab_vi(config) print(len(word_vocab_vi)) sentence = "Mỗi_một khoa_học_gia đều thuộc một nhóm nghiên_cứu , và mỗi nhóm đều nghiên_cứu rất nhiều đề_tài đa_dạng .".split() sentence = ([word_vocab_vi[embeddings.normalize_word(w)] for w in sentence]) print(sentence) return if config.mode == 'decode-vi': word_vocab_reversed_vi = embeddings.get_word_vocab_reversed_vi(config) sentence = "8976 32085 129 178 17 261 381 5 7 195 261 129 381 60 37 2474 1903 6".split() sentence = ([word_vocab_reversed_vi[int(w)] for w in sentence]) print(sentence) return if config.mode == 'embed': word_embeddings = embeddings.get_word_embeddings(config) word = 50 embed = word_embeddings[word] print(' '.join(str(x) for x in embed)) return if config.mode == 'embed-vi': word_embeddings_vi = embeddings.get_word_embeddings_vi(config) word = 50 embed = word_embeddings_vi[word] print(' '.join(str(x) for x in embed)) return with tf.Graph().as_default() as graph: model_trainer = trainer.Trainer(config) summary_writer = tf.summary.FileWriter(config.summaries_dir) checkpoints_saver = tf.train.Saver(max_to_keep=1) best_model_saver = tf.train.Saver(max_to_keep=1) init_op = tf.global_variables_initializer() graph.finalize() with tf.Session() as sess: sess.run(init_op) progress = training_progress.TrainingProgress( config, sess, checkpoints_saver, best_model_saver, config.mode == 'train') utils.log() if config.mode == 'train': #summary_writer.add_graph(sess.graph) utils.heading('START TRAINING ({:})'.format(config.model_name)) model_trainer.train(sess, progress, summary_writer) elif config.mode == 'eval-train': utils.heading('RUN EVALUATION ({:})'.format(config.model_name)) progress.best_model_saver.restore(sess, tf.train.latest_checkpoint( config.checkpoints_dir)) model_trainer.evaluate_all_tasks(sess, summary_writer, None, train_set=True) elif config.mode == 'eval-dev': utils.heading('RUN EVALUATION ({:})'.format(config.model_name)) progress.best_model_saver.restore(sess, tf.train.latest_checkpoint( config.checkpoints_dir)) model_trainer.evaluate_all_tasks(sess, summary_writer, None, train_set=False) elif config.mode == 'infer': utils.heading('START INFER ({:})'.format(config.model_name)) progress.best_model_saver.restore(sess, tf.train.latest_checkpoint( config.checkpoints_dir)) model_trainer.infer(sess) elif config.mode == 'translate': utils.heading('START TRANSLATE ({:})'.format(config.model_name)) progress.best_model_saver.restore(sess, tf.train.latest_checkpoint( config.checkpoints_dir)) model_trainer.translate(sess) elif config.mode == 'eval-translate-train': utils.heading('RUN EVALUATION ({:})'.format(config.model_name)) progress.best_model_saver.restore(sess, tf.train.latest_checkpoint( config.checkpoints_dir)) model_trainer.evaluate_all_tasks(sess, summary_writer, None, train_set=True, is_translate=True) elif config.mode == 'eval-translate-dev': utils.heading('RUN EVALUATION ({:})'.format(config.model_name)) progress.best_model_saver.restore(sess, tf.train.latest_checkpoint( config.checkpoints_dir)) model_trainer.evaluate_all_tasks(sess, summary_writer, None, train_set=False, is_translate=True) else: raise ValueError('Mode must be "train" or "eval"')