def processS(): numCores=int(sys.argv[1]) wfname='resting_preproc' workflow=pe.Workflow(name=wfname) anatpreproc=create_anat_preproc() anatpreproc.inputs.inputspec.anat=os.path.abspath('/home/sharad/Resources/0010052/session_1/anat_1/mprage.nii.gz') funcpreproc=create_func_preproc() funcpreproc.inputs.inputspec.rest=os.path.abspath('/home/sharad/Resources/0010052/session_1/rest_1/rest.nii.gz') funcpreproc.inputs.inputspec.start_idx=0 funcpreproc.inputs.inputspec.stop_idx=175 segpreproc=create_seg_preproc() segpreproc.inputs.inputspec.PRIOR_CSF = os.path.abspath('/home/sharad/nki_nyu_pipeline/tissuepriors/avg152T1_csf_bin.nii.gz') segpreproc.inputs.inputspec.PRIOR_WHITE = os.path.abspath('/home/sharad/nki_nyu_pipeline/tissuepriors/avg152T1_white_bin.nii.gz') segpreproc.inputs.inputspec.standard_res_brain=os.path.abspath('/frodo/shared/RH5_fsl/data/standard/MNI152_T1_3mm_brain.nii.gz') regpreproc=create_reg_preproc() regpreproc.inputs.inputspec.standard_res_brain=os.path.abspath('/frodo/shared/RH5_fsl/data/standard/MNI152_T1_3mm_brain.nii.gz') regpreproc.inputs.inputspec.standard=os.path.abspath('/frodo/shared/RH5_fsl/data/standard/MNI152_T1_3mm.nii.gz') regpreproc.inputs.inputspec.config_file=os.path.abspath('/frodo/shared/RH5_fsl/etc/flirtsch/T1_2_MNI152_3mm.cnf') regpreproc.inputs.inputspec.standard_brain_mask_dil=os.path.abspath('/frodo/shared/RH5_fsl/data/standard/MNI152_T1_3mm_brain_mask_dil.nii.gz') workflow.connect(funcpreproc, 'outputspec.example_func', regpreproc, 'inputspec.example_func') workflow.connect(anatpreproc, 'outputspec.brain', regpreproc, 'inputspec.brain') workflow.connect(anatpreproc, 'outputspec.reorient', regpreproc, 'inputspec.reorient') workflow.connect(funcpreproc, 'outputspec.preprocessed_mask', segpreproc, 'inputspec.preprocessed_mask') workflow.connect(anatpreproc, 'outputspec.brain', segpreproc, 'inputspec.brain') workflow.connect(funcpreproc, 'outputspec.example_func', segpreproc, 'inputspec.example_func') workflow.connect(regpreproc, 'outputspec.highres2example_func_mat', segpreproc, 'inputspec.highres2example_func_mat') workflow.connect(regpreproc, 'outputspec.stand2highres_warp', segpreproc, 'inputspec.stand2highres_warp') # workflow.add_nodes([anatpreproc, funcpreproc]) workflow.base_dir='/home/sharad/nki_nyu_pipeline/working_dir' workflow.run(plugin='MultiProc', plugin_args={'n_procs': numCores})
def get_workflow(wf_name, c): preproc = None """ setup standard file paths """ prior_path = os.path.join(c.priorDirectory, c.standardResolution) PRIOR_CSF = os.path.join(prior_path, 'avg152T1_csf_bin.nii.gz') PRIOR_GRAY = os.path.join(prior_path, 'avg152T1_gray_bin.nii.gz') PRIOR_WHITE = os.path.join(prior_path, 'avg152T1_white_bin.nii.gz') standard_res_brain = os.path.join(c.FSLDIR, 'data/standard/MNI152_T1_%s_brain.nii.gz' % (c.standardResolution)) standard = os.path.join(c.FSLDIR, 'data/standard/MNI152_T1_%s.nii.gz' % (c.standardResolution)) standard_brain_mask_dil = os.path.join(c.FSLDIR, 'data/standard/MNI152_T1_%s_brain_mask_dil.nii.gz' % (c.standardResolution)) config_file = os.path.join(c.FSLDIR, 'etc/flirtsch/T1_2_MNI152_%s.cnf' % (c.standardResolution)) brain_symmetric = os.path.join(c.FSLDIR, 'data/standard/MNI152_T1_2mm_brain_symmetric.nii.gz') symm_standard = os.path.join(c.FSLDIR, 'data/standard/MNI152_T1_2mm_symmetric.nii.gz') twomm_brain_mask_dil = os.path.join(c.FSLDIR, 'data/standard/MNI152_T1_2mm_brain_mask_symmetric_dil.nii.gz') config_file_twomm = os.path.join(c.FSLDIR, 'etc/flirtsch/T1_2_MNI152_2mm.cnf') identity_matrix = os.path.join(c.FSLDIR, 'etc/flirtsch/ident.mat') if wf_name.lower() == 'anat': preproc = create_anat_preproc() return preproc if wf_name.lower() == 'func': preproc = create_func_preproc() preproc.inputs.inputspec.start_idx = c.startIdx preproc.inputs.inputspec.stop_idx = c.stopIdx return preproc if wf_name.lower() == 'seg': preproc = create_seg_preproc() preproc.inputs.inputspec.PRIOR_CSF = PRIOR_CSF preproc.inputs.inputspec.PRIOR_WHITE = PRIOR_WHITE preproc.inputs.inputspec.PRIOR_GRAY = PRIOR_GRAY preproc.inputs.inputspec.standard_res_brain = standard_res_brain preproc.inputs.csf_threshold.csf_threshold = \ c.cerebralSpinalFluidThreshold preproc.inputs.wm_threshold.wm_threshold = \ c.whiteMatterThreshold preproc.inputs.gm_threshold.gm_threshold = \ c.grayMatterThreshold preproc.get_node('csf_threshold').iterables = ('csf_threshold', c.cerebralSpinalFluidThreshold) preproc.get_node('wm_threshold').iterables = ('wm_threshold', c.whiteMatterThreshold) preproc.get_node('gm_threshold').iterables = ('gm_threshold', c.grayMatterThreshold) return preproc if wf_name.lower() == 'reg': preproc = create_reg_preproc() preproc.inputs.inputspec.standard_res_brain = \ standard_res_brain preproc.inputs.inputspec.standard = standard preproc.inputs.inputspec.config_file = config_file preproc.inputs.inputspec.standard_brain_mask_dil = \ standard_brain_mask_dil return preproc if wf_name.lower() == 'alff': preproc = create_alff_preproc(c) preproc.inputs.inputspec.standard = standard preproc.inputs.hp_input.hp = c.highPassFreqALFF preproc.inputs.lp_input.lp = c.lowPassFreqALFF preproc.inputs.fwhm_input.fwhm = c.fwhm preproc.get_node('hp_input').iterables = ('hp', c.highPassFreqALFF) preproc.get_node('lp_input').iterables = ('lp', c.lowPassFreqALFF) preproc.get_node('fwhm_input').iterables = ('fwhm', c.fwhm) return preproc if wf_name.lower() == 'sca': preproc = create_sca_preproc(c.correlationSpace) preproc.inputs.fwhm_input.fwhm = c.fwhm preproc.get_node('fwhm_input').iterables = ('fwhm', c.fwhm) preproc.inputs.inputspec.standard = standard return preproc if wf_name.lower() == 'vmhc': preproc = create_vmhc_preproc(c) preproc.inputs.inputspec.brain_symmetric = \ brain_symmetric preproc.inputs.inputspec.symm_standard = \ symm_standard preproc.inputs.inputspec.twomm_brain_mask_dil = \ twomm_brain_mask_dil preproc.inputs.inputspec.config_file_twomm = \ config_file_twomm preproc.inputs.inputspec.standard = \ standard return preproc if wf_name.lower() == 'sc': preproc = create_scrubbing_preproc() return preproc if wf_name.lower() == 'pm': preproc = create_parameters_preproc(c) preproc.inputs.threshold_input.threshold = c.scrubbingThreshold preproc.get_node('threshold_input').iterables = ('threshold', c.scrubbingThreshold) return preproc if wf_name.lower() == 'select': preproc = selector_wf() preproc.inputs.scrubbed_input.scrubbed = c.scrubData preproc.get_node('scrubbed_input').iterables = \ ('scrubbed', c.scrubData) return preproc if wf_name.lower() == 'nuisance': preproc = create_nuisance_preproc() preproc.inputs.selector_input.selector = c.Corrections preproc.inputs.nc_input.nc = c.nComponents preproc.inputs.target_angle_deg_input.target_angle_deg = \ c.targetAngleDeg preproc.get_node('selector_input').iterables = \ ('selector', c.Corrections) preproc.get_node('nc_input').iterables = \ ('nc', c.nComponents) preproc.get_node('target_angle_deg_input').iterables = \ ('target_angle_deg', c.targetAngleDeg) return preproc if wf_name.lower() == 'mprage_in_mnioutputs': preproc = mprage_in_mnioutputs() preproc.inputs.inputspec.standard = standard return preproc if wf_name.lower() == 'func_in_mnioutputs': preproc = func_in_mnioutputs() preproc.inputs.inputspec.standard = standard return preproc if wf_name.lower() == 'freq_filter': from base_nuisance import bandpass_voxels import nipype.interfaces.utility as util preproc = pe.MapNode(util.Function(input_names=['realigned_file', 'sample_period', 'bandpass_freqs'], output_names=['bandpassed_file'], function=bandpass_voxels), name='bandpass_filter', iterfield=['realigned_file', 'bandpass_freqs', 'sample_period']) preproc.inputs.bandpass_freqs = c.nuisanceBandpassFreq #preproc.inputs.sample_period = c.TR return preproc if wf_name.lower() == 'ts': preproc = create_timeseries_preproc(True, True, True, c.runSurfaceRegistraion) preproc.inputs.inputspec.recon_subjects = c.reconSubjectsDirectory preproc.inputs.inputspec.standard = standard preproc.inputs.inputspec.identity_matrix = identity_matrix preproc.inputs.inputspec.unitTSOutputs = [True, True] preproc.inputs.inputspec.voxelTSOutputs = [True, True] preproc.inputs.inputspec.verticesTSOutputs = [True, True] return preproc if wf_name.lower() == 'group_analysis': preproc = create_group_analysis(c.fTest) preproc.inputs.inputspec.z_threshold = c.zThreshold preproc.inputs.inputspec.p_threshold = c.pThreshold preproc.inputs.inputspec.parameters = (c.FSLDIR, c.MNI) return preproc
def get_workflow(wf_name, c): preproc = None """ setup standard file paths """ prior_path = os.path.join(c.priorDirectory, c.standardResolution) PRIOR_CSF = os.path.join(prior_path, 'avg152T1_csf_bin.nii.gz') PRIOR_GRAY = os.path.join(prior_path, 'avg152T1_gray_bin.nii.gz') PRIOR_WHITE = os.path.join(prior_path, 'avg152T1_white_bin.nii.gz') standard_res_brain = os.path.join(c.FSLDIR, 'data/standard/MNI152_T1_%s_brain.nii.gz' % (c.standardResolution)) standard = os.path.join(c.FSLDIR, 'data/standard/MNI152_T1_%s.nii.gz' % (c.standardResolution)) standard_brain_mask_dil = '/home2/ssikka/scripts1/templates/MNI152_T1_%s_brain_mask_dil.nii.gz' % (c.standardResolution) config_file = '/home2/ssikka/scripts1/templates/T1_2_MNI152_%s.cnf' % (c.standardResolution) brain_symmetric = '/home2/ssikka/scripts1/templates/MNI152_T1_2mm_brain_symmetric.nii.gz' symm_standard = '/home2/ssikka/scripts1/templates/MNI152_T1_2mm_symmetric.nii.gz' twomm_brain_mask_dil = '/home2/ssikka/scripts1/templates/MNI152_T1_2mm_brain_mask_symmetric_dil.nii.gz' config_file_twomm = '/home2/ssikka/scripts1/templates/T1_2_MNI152_2mm.cnf' identity_matrix = os.path.join(c.FSLDIR, 'etc/flirtsch/ident.mat') if wf_name.lower() == 'anat': preproc = create_anat_preproc() return preproc if wf_name.lower() == 'func': preproc = create_func_preproc() preproc.inputs.inputspec.start_idx = c.startIdx preproc.inputs.inputspec.stop_idx = c.stopIdx return preproc if wf_name.lower() == 'seg': preproc = create_seg_preproc() preproc.inputs.inputspec.PRIOR_CSF = PRIOR_CSF preproc.inputs.inputspec.PRIOR_WHITE = PRIOR_WHITE preproc.inputs.inputspec.PRIOR_GRAY = PRIOR_GRAY preproc.inputs.inputspec.standard_res_brain = standard_res_brain preproc.inputs.csf_threshold.csf_threshold = \ c.cerebralSpinalFluidThreshold preproc.inputs.wm_threshold.wm_threshold = \ c.whiteMatterThreshold preproc.inputs.gm_threshold.gm_threshold = \ c.grayMatterThreshold preproc.get_node('csf_threshold').iterables = ('csf_threshold', c.cerebralSpinalFluidThreshold) preproc.get_node('wm_threshold').iterables = ('wm_threshold', c.whiteMatterThreshold) preproc.get_node('gm_threshold').iterables = ('gm_threshold', c.grayMatterThreshold) return preproc if wf_name.lower() == 'reg': preproc = create_reg_preproc() preproc.inputs.inputspec.standard_res_brain = \ standard_res_brain preproc.inputs.inputspec.standard = standard preproc.inputs.inputspec.config_file = config_file preproc.inputs.inputspec.standard_brain_mask_dil = \ standard_brain_mask_dil return preproc if wf_name.lower() == 'alff': preproc = create_alff_preproc() preproc.inputs.inputspec.standard = standard preproc.inputs.hp_input.hp = c.highPassFreqALFF preproc.inputs.lp_input.lp = c.lowPassFreqALFF preproc.inputs.fwhm_input.fwhm = c.fwhm preproc.get_node('hp_input').iterables = ('hp', c.highPassFreqALFF) preproc.get_node('lp_input').iterables = ('lp', c.lowPassFreqALFF) preproc.get_node('fwhm_input').iterables = ('fwhm', c.fwhm) return preproc if wf_name.lower() == 'sca': preproc = create_sca_preproc(c.correlationSpace) preproc.inputs.fwhm_input.fwhm = c.fwhm preproc.get_node('fwhm_input').iterables = ('fwhm', c.fwhm) preproc.inputs.inputspec.standard = standard return preproc if wf_name.lower() == 'vmhc': preproc = create_vmhc_preproc() preproc.inputs.inputspec.brain_symmetric = \ brain_symmetric preproc.inputs.inputspec.symm_standard = \ symm_standard preproc.inputs.inputspec.twomm_brain_mask_dil = \ twomm_brain_mask_dil preproc.inputs.inputspec.config_file_twomm = \ config_file_twomm preproc.inputs.inputspec.standard = \ standard return preproc if wf_name.lower() == 'sc': preproc = create_scrubbing_preproc() preproc.inputs.threshold_input.threshold = c.scrubbingThreshold preproc.get_node('threshold_input').iterables = ('threshold', c.scrubbingThreshold) return preproc if wf_name.lower() == 'select': preproc = selector_wf() preproc.inputs.run_scrubbing_input.run_scrubbing = c.scrubData preproc.get_node('run_scrubbing_input').iterables = \ ('run_scrubbing', c.scrubData) return preproc if wf_name.lower() == 'nuisance': preproc = create_nuisance_preproc() preproc.inputs.selector_input.selector = c.Corrections preproc.inputs.nc_input.nc = c.nComponents preproc.inputs.target_angle_deg_input.target_angle_deg = \ c.targetAngleDeg preproc.get_node('selector_input').iterables = \ ('selector', c.Corrections) preproc.get_node('nc_input').iterables = \ ('nc', c.nComponents) preproc.get_node('target_angle_deg_input').iterables = \ ('target_angle_deg', c.targetAngleDeg) return preproc if wf_name.lower() == 'mprage_in_mnioutputs': preproc = mprage_in_mnioutputs() preproc.inputs.inputspec.standard = standard return preproc if wf_name.lower() == 'func_in_mnioutputs': preproc = func_in_mnioutputs() preproc.inputs.inputspec.standard = standard return preproc if wf_name.lower() == 'freq_filter': from base_nuisance import bandpass_voxels import nipype.interfaces.utility as util preproc = pe.MapNode(util.Function(input_names=['realigned_file', 'sample_period', 'bandpass_freqs'], output_names=['bandpassed_file'], function=bandpass_voxels), name='bandpass_filter', iterfield=['realigned_file', 'bandpass_freqs']) preproc.inputs.bandpass_freqs = c.nuisanceBandpassFreq preproc.inputs.sample_period = c.TR return preproc if wf_name.lower() == 'ts': preproc = create_timeseries_preproc(True, True, True, c.runSurfaceRegistraion) preproc.inputs.inputspec.recon_subjects = c.reconSubjectsDirectory preproc.inputs.inputspec.standard = standard preproc.inputs.inputspec.identity_matrix = identity_matrix preproc.inputs.inputspec.unitTSOutputs = [True, True] preproc.inputs.inputspec.voxelTSOutputs = [True, True] preproc.inputs.inputspec.verticesTSOutputs = [True, True] return preproc if wf_name.lower() == 'group_analysis': preproc = create_group_analysis(c.fTest) preproc.inputs.inputspec.z_threshold = c.zThreshold preproc.inputs.inputspec.p_threshold = c.pThreshold preproc.inputs.inputspec.parameters = (c.FSLDIR, c.MNI) return preproc
def get_workflow(wf_name, c): preproc = None """ setup standard file paths """ prior_path = os.path.join(c.priorDirectory, c.standardResolution) PRIOR_CSF = os.path.join(prior_path, 'avg152T1_csf_bin.nii.gz') PRIOR_GRAY = os.path.join(prior_path, 'avg152T1_gray_bin.nii.gz') PRIOR_WHITE = os.path.join(prior_path, 'avg152T1_white_bin.nii.gz') standard_res_brain = os.path.join(c.FSLDIR, 'data/standard/MNI152_T1_%s_brain.nii.gz' % (c.standardResolution)) standard = os.path.join(c.FSLDIR, 'data/standard/MNI152_T1_%s.nii.gz' % (c.standardResolution)) standard_brain_mask_dil = os.path.join(c.FSLDIR, 'data/standard/MNI152_T1_%s_brain_mask_dil.nii.gz' % (c.standardResolution)) config_file = os.path.join(c.FSLDIR, 'etc/flirtsch/T1_2_MNI152_%s.cnf' % (c.standardResolution)) brain_symmetric = os.path.join(c.FSLDIR, 'data/standard/MNI152_T1_2mm_brain_symmetric.nii.gz') symm_standard = os.path.join(c.FSLDIR, 'data/standard/MNI152_T1_2mm_symmetric.nii.gz') twomm_brain_mask_dil = os.path.join(c.FSLDIR, 'data/standard/MNI152_T1_2mm_brain_mask_symmetric_dil.nii.gz') config_file_twomm = os.path.join(c.FSLDIR, 'etc/flirtsch/T1_2_MNI152_2mm.cnf') identity_matrix = os.path.join(c.FSLDIR, 'etc/flirtsch/ident.mat') if wf_name.lower() == 'anat': preproc = create_anat_preproc() return preproc if wf_name.lower() == 'func': preproc = create_func_preproc() preproc.inputs.inputspec.start_idx = c.startIdx preproc.inputs.inputspec.stop_idx = c.stopIdx return preproc if wf_name.lower() == 'seg': preproc = create_seg_preproc() preproc.inputs.inputspec.PRIOR_CSF = PRIOR_CSF preproc.inputs.inputspec.PRIOR_WHITE = PRIOR_WHITE preproc.inputs.inputspec.PRIOR_GRAY = PRIOR_GRAY preproc.inputs.inputspec.standard_res_brain = standard_res_brain preproc.inputs.csf_threshold.csf_threshold = \ c.cerebralSpinalFluidThreshold preproc.inputs.wm_threshold.wm_threshold = \ c.whiteMatterThreshold preproc.inputs.gm_threshold.gm_threshold = \ c.grayMatterThreshold preproc.get_node('csf_threshold').iterables = ('csf_threshold', c.cerebralSpinalFluidThreshold) preproc.get_node('wm_threshold').iterables = ('wm_threshold', c.whiteMatterThreshold) preproc.get_node('gm_threshold').iterables = ('gm_threshold', c.grayMatterThreshold) return preproc if wf_name.lower() == 'reg': preproc = create_reg_preproc() preproc.inputs.inputspec.standard_res_brain = \ standard_res_brain preproc.inputs.inputspec.standard = standard preproc.inputs.inputspec.config_file = config_file preproc.inputs.inputspec.standard_brain_mask_dil = \ standard_brain_mask_dil return preproc if wf_name.lower() == 'alff': preproc = create_alff_preproc(c) preproc.inputs.inputspec.standard = standard preproc.inputs.hp_input.hp = c.highPassFreqALFF preproc.inputs.lp_input.lp = c.lowPassFreqALFF preproc.inputs.fwhm_input.fwhm = c.fwhm preproc.get_node('hp_input').iterables = ('hp', c.highPassFreqALFF) preproc.get_node('lp_input').iterables = ('lp', c.lowPassFreqALFF) preproc.get_node('fwhm_input').iterables = ('fwhm', c.fwhm) return preproc if wf_name.lower() == 'sca': preproc = create_sca_preproc(c.correlationSpace) preproc.inputs.fwhm_input.fwhm = c.fwhm preproc.get_node('fwhm_input').iterables = ('fwhm', c.fwhm) preproc.inputs.inputspec.standard = standard return preproc if wf_name.lower() == 'vmhc': preproc = create_vmhc_preproc(c) preproc.inputs.inputspec.brain_symmetric = \ brain_symmetric preproc.inputs.inputspec.symm_standard = \ symm_standard preproc.inputs.inputspec.twomm_brain_mask_dil = \ twomm_brain_mask_dil preproc.inputs.inputspec.config_file_twomm = \ config_file_twomm preproc.inputs.inputspec.standard = \ standard preproc.inputs.fwhm_input.fwhm = c.fwhm preproc.get_node('fwhm_input').iterables = ('fwhm', c.fwhm) return preproc if wf_name.lower() == 'sc': preproc = create_scrubbing_preproc() return preproc if wf_name.lower() == 'pm': preproc = create_parameters_preproc(c) preproc.inputs.threshold_input.threshold = c.scrubbingThreshold preproc.get_node('threshold_input').iterables = ('threshold', c.scrubbingThreshold) return preproc if wf_name.lower() == 'select': preproc = selector_wf() preproc.inputs.scrubbed_input.scrubbed = c.scrubData preproc.get_node('scrubbed_input').iterables = \ ('scrubbed', c.scrubData) return preproc if wf_name.lower() == 'nuisance': preproc = create_nuisance_preproc() preproc.inputs.selector_input.selector = c.Corrections preproc.inputs.nc_input.nc = c.nComponents preproc.inputs.target_angle_deg_input.target_angle_deg = \ c.targetAngleDeg preproc.get_node('selector_input').iterables = \ ('selector', c.Corrections) preproc.get_node('nc_input').iterables = \ ('nc', c.nComponents) preproc.get_node('target_angle_deg_input').iterables = \ ('target_angle_deg', c.targetAngleDeg) return preproc if wf_name.lower() == 'mprage_in_mnioutputs': preproc = mprage_in_mnioutputs() preproc.inputs.inputspec.standard = standard return preproc if wf_name.lower() == 'func_in_mnioutputs': preproc = func_in_mnioutputs() preproc.inputs.inputspec.standard = standard return preproc if wf_name.lower() == 'freq_filter':
struct=[['session_id', 'subject_id']]) datasink = pe.Node(nio.DataSink(infields=['container.@subject']), name='sinker') datasink.inputs.base_directory = output_path #datasink.inputs.substitutions = [('session\d_subject_id_', '')] #st = pe.Node(interface=fsl.SliceTimer(), name='st') #st.iterables = [('time_repetition', [2.0, 3.0])] workflow = pe.Workflow(name='wf') workflow.base_dir = output_path anatpreproc = create_anat_preproc() funcpreproc = create_func_preproc() funcpreproc.inputs.inputspec.start_idx = start_volume funcpreproc.inputs.inputspec.stop_idx = stop_volume regpreproc = create_reg_preproc() regpreproc.inputs.inputspec.standard_res_brain = os.path.abspath( '/usr/share/fsl/4.1/data/standard/MNI152_T1_3mm_brain.nii.gz') regpreproc.inputs.inputspec.standard = os.path.abspath( '/usr/share/fsl/4.1/data/standard/MNI152_T1_3mm.nii.gz') regpreproc.inputs.inputspec.config_file = os.path.abspath( '/usr/share/fsl/4.1/etc/flirtsch/T1_2_MNI152_3mm.cnf') regpreproc.inputs.inputspec.standard_brain_mask_dil = os.path.abspath( '/usr/share/fsl/4.1/data/standard/MNI152_T1_3mm_brain_mask_dil.nii.gz') segpreproc = create_seg_preproc() segpreproc.inputs.inputspec.PRIOR_CSF = os.path.abspath(
datasource.inputs.template_args = dict(func=[['session_id', 'subject_id']], struct=[['session_id', 'subject_id']]) datasink = pe.Node(nio.DataSink(infields=['container.@subject']), name='sinker') datasink.inputs.base_directory = output_path #datasink.inputs.substitutions = [('session\d_subject_id_', '')] #st = pe.Node(interface=fsl.SliceTimer(), name='st') #st.iterables = [('time_repetition', [2.0, 3.0])] workflow = pe.Workflow(name='wf') workflow.base_dir = output_path anatpreproc=create_anat_preproc() funcpreproc=create_func_preproc() funcpreproc.inputs.inputspec.start_idx=start_volume funcpreproc.inputs.inputspec.stop_idx=stop_volume regpreproc=create_reg_preproc() regpreproc.inputs.inputspec.standard_res_brain=os.path.abspath('/usr/share/fsl/4.1/data/standard/MNI152_T1_3mm_brain.nii.gz') regpreproc.inputs.inputspec.standard=os.path.abspath('/usr/share/fsl/4.1/data/standard/MNI152_T1_3mm.nii.gz') regpreproc.inputs.inputspec.config_file=os.path.abspath('/usr/share/fsl/4.1/etc/flirtsch/T1_2_MNI152_3mm.cnf') regpreproc.inputs.inputspec.standard_brain_mask_dil=os.path.abspath('/usr/share/fsl/4.1/data/standard/MNI152_T1_3mm_brain_mask_dil.nii.gz') segpreproc=create_seg_preproc() segpreproc.inputs.inputspec.PRIOR_CSF = os.path.abspath('./tissuepriors/3mm/avg152T1_csf_bin.nii.gz') segpreproc.inputs.inputspec.PRIOR_WHITE = os.path.abspath('./tissuepriors/3mm/avg152T1_white_bin.nii.gz') segpreproc.inputs.inputspec.PRIOR_GRAY = os.path.abspath('./tissuepriors/3mm/avg152T1_gray_bin_3mm.nii.gz') segpreproc.inputs.inputspec.standard_res_brain=os.path.abspath('/usr/share/fsl/4.1/data/standard/MNI152_T1_3mm_brain.nii.gz')