def __init__( self, name, extractive_class, abstractive_class, extractive_args, abstractive_args, ): super().__init__(name) self.extractive = baselines.use(extractive_class, **extractive_args) self.abstractive = baselines.use(abstractive_class, **abstractive_args)
args = parse_json_file(json_args.run_args_file) # Load dataset dataset = load_dataset( args.dataset.name, split=args.dataset.split, cache_dir=args.dataset.cache_dir ) # Compute baselines scores = {} for baseline in args.baselines: print(f"Compute {baseline.baseline_class}...") dataset, score = use(baseline.baseline_class, **baseline.init_kwargs).compute_rouge( dataset, args.dataset.document_column_name, args.dataset.summary_colunm_name, list(args.run.rouge_types.keys()), **baseline.run_kwargs, ) scores[baseline.init_kwargs["name"]] = score # Save results Path(args.run.hypotheses_folder).mkdir(parents=True, exist_ok=True) utils.write_references( dataset, args.run.hypotheses_folder, args.dataset.summary_colunm_name, ) utils.write_documents( dataset, args.run.hypotheses_folder, args.dataset.document_column_name, ) utils.write_hypotheses(dataset, args.run.hypotheses_folder) if args.run.csv_file != None: