def test_constant_schedule(): """ test ConstantSchedule """ constant_sched = ConstantSchedule(5) for i in range(-100, 100): assert np.isclose(constant_sched.value(i), 5)
def test_constant_schedule(): cs = ConstantSchedule(5) for i in range(-100, 100): assert np.isclose(cs.value(i), 5)
class DeepQ(object): """Train a deepq model. Parameters ------- env: gym.Env environment to train on q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. lr: float learning rate for adam optimizer max_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. set to None to disable printing batch_size: int size of a batched sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to max_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function. """ def __init__(self, env, q_func, lr=5e-4, max_timesteps=100000, buffer_size=50000, exploration_fraction=0.1, exploration_final_eps=0.02, train_freq=1, batch_size=32, print_freq=100, checkpoint_freq=10000, learning_starts=1000, gamma=1.0, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, param_noise=False, callback=None, max_episodes=100): self.env = env self.q_func = q_func self.lr = lr self.max_timesteps = max_timesteps self.buffer_size = buffer_size self.exploration_fraction = exploration_fraction self.exploration_final_eps = exploration_final_eps self.train_freq = train_freq self.batch_size = batch_size self.print_freq = print_freq self.checkpoint_freq = checkpoint_freq self.learning_starts = learning_starts self.gamma = gamma self.target_network_update_freq = target_network_update_freq self.prioritized_replay = prioritized_replay self.prioritized_replay_alpha = prioritized_replay_alpha self.prioritized_replay_beta0 = prioritized_replay_beta0 self.prioritized_replay_beta_iters = prioritized_replay_beta_iters self.prioritized_replay_eps = prioritized_replay_eps self.param_noise = param_noise self.callback = callback self.max_episodes = max_episodes # Create all the functions necessary to train the model self.sess = tf.Session() self.sess.__enter__() # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph self.observation_space_shape = env.observation_space.shape def make_obs_ph(self, name): return U.BatchInput(self.observation_space_shape, name=name) def make_build_train(self): # Build act and train networks self.act, self.train, self.update_target, self.debug = deepq.build_train( make_obs_ph=self.make_obs_ph, q_func=self.q_func, num_actions=self.env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=self.lr), gamma=self.gamma, grad_norm_clipping=10, param_noise=self.param_noise) self.act_params = { 'make_obs_ph': self.make_obs_ph, 'q_func': self.q_func, 'num_actions': self.env.action_space.n, } self.act = ActWrapper(self.act, self.act_params) return 'make_build_train() complete' def initialize(self): # Create the replay buffer if self.prioritized_replay: self.replay_buffer = PrioritizedReplayBuffer( self.buffer_size, alpha=self.prioritized_replay_alpha) if self.prioritized_replay_beta_iters is None: self.prioritized_replay_beta_iters = self.max_timesteps self.beta_schedule = LinearSchedule( self.prioritized_replay_beta_iters, initial_p=self.prioritized_replay_beta0, final_p=1.0) else: self.replay_buffer = ReplayBuffer(self.buffer_size) self.beta_schedule = None # Create the schedule for exploration starting from 1. # self.exploration = LinearSchedule(schedule_timesteps=int(self.exploration_fraction * self.max_timesteps), # initial_p=1.0, # final_p=self.exploration_final_eps) self.exploration = ConstantSchedule(self.exploration_final_eps) # Initialize the parameters and copy them to the target network. U.initialize() self.update_target() return 'initialize() complete' def transfer_pretrain(self, transferred_instances, epochs, tr_batch_size, keep_in_replay_buffer=True): """ This is a custom function from University of Toronto group to first pretrain the deepq train network with transferred instances. These instances must be zip([s],[a],[r],[s']) tuples mapped over to the same state and action spaces as the target task environment. No output - just updates parameters of train and target networks. """ # TODO - function that trains self.act and self.train using mapped instances done = False # pack all instances into replay buffer for obs, action, rew, new_obs in transferred_instances: self.replay_buffer.add(obs, action, rew, new_obs, float(done)) for epoch in range(epochs): obses_t, actions, rewards, obses_tp1, dones = self.replay_buffer.sample( tr_batch_size) weights, batch_idxes = np.ones_like(rewards), None td_errors = self.train(obses_t, actions, rewards, obses_tp1, dones, weights) self.update_target() if keep_in_replay_buffer is not True: self.replay_buffer = ReplayBuffer(self.buffer_size) return 'transfer_pretrain() complete' def task_train(self): self.episode_rewards = [0.0] self.episode_steps = [0.0] self.saved_mean_reward = None obs = self.env.reset() reset = True with tempfile.TemporaryDirectory() as td: model_saved = False model_file = os.path.join(td, "model") for t in range(self.max_timesteps): if self.callback is not None: if self.callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} if not self.param_noise: update_eps = self.exploration.value(t) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(t). # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = -np.log( 1. - self.exploration.value(t) + self.exploration.value(t) / float(self.env.action_space.n)) kwargs['reset'] = reset kwargs[ 'update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True action = self.act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0] env_action = action reset = False new_obs, rew, done, _ = self.env.step(env_action) # Store transition in the replay buffer. self.replay_buffer.add(obs, action, rew, new_obs, float(done)) obs = new_obs self.episode_rewards[-1] += rew self.episode_steps[-1] += 1 if done: obs = self.env.reset() self.episode_rewards.append(0.0) self.episode_steps.append(0.0) reset = True if t > self.learning_starts and t % self.train_freq == 0: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if self.prioritized_replay: experience = self.replay_buffer.sample( self.batch_size, beta=self.beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = self.replay_buffer.sample( self.batch_size) weights, batch_idxes = np.ones_like(rewards), None td_errors = self.train(obses_t, actions, rewards, obses_tp1, dones, weights) if self.prioritized_replay: new_priorities = np.abs( td_errors) + self.prioritized_replay_eps self.replay_buffer.update_priorities( batch_idxes, new_priorities) if t > self.learning_starts and t % self.target_network_update_freq == 0: # Update target network periodically. self.update_target() mean_100ep_reward = round( np.mean(self.episode_rewards[-101:-1]), 1) num_episodes = len(self.episode_rewards) if done and self.print_freq is not None and len( self.episode_rewards) % self.print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean 100 episode reward", mean_100ep_reward) logger.record_tabular("% time spent exploring", int(100 * self.exploration.value(t))) logger.dump_tabular() if (self.checkpoint_freq is not None and t > self.learning_starts and num_episodes > 100 and t % self.checkpoint_freq == 0): if self.saved_mean_reward is None or mean_100ep_reward > self.saved_mean_reward: if self.print_freq is not None: logger.log( "Saving model due to mean reward increase: {} -> {}" .format(self.saved_mean_reward, mean_100ep_reward)) U.save_state(model_file) model_saved = True self.saved_mean_reward = mean_100ep_reward if num_episodes >= self.max_episodes: break if model_saved: if self.print_freq is not None: logger.log("Restored model with mean reward: {}".format( self.saved_mean_reward)) U.load_state(model_file) return self.act, self.episode_rewards, self.episode_steps def get_q_values(self, obs): ''' Input: obs should be a numpy array with shape (?,state_space) Output: returns Q values for each possible action with shape (?,action_space) ''' return self.debug['q_values'](obs)
def sobolev_learn_episode( env, q_func, lr=5e-4, max_episodes=1000, buffer_size=50000, epsilon=.1, #exploration_fraction=0.1, #exploration_final_eps=0.02, train_freq=1, batch_size=32, print_freq=100, checkpoint_freq=10000, learning_starts=1000, gamma=1.0, target_network_update_freq=500, prioritized_replay=False, prioritized_replay_alpha=0.6, prioritized_replay_beta0=0.4, prioritized_replay_beta_iters=None, prioritized_replay_eps=1e-6, param_noise=False, callback=None, alpha=1.0, grad_norm_clipping=10.0): """Train a deepq model. Parameters ------- env: gym.Env environment to train on q_func: (tf.Variable, int, str, bool) -> tf.Variable the model that takes the following inputs: observation_in: object the output of observation placeholder num_actions: int number of actions scope: str reuse: bool should be passed to outer variable scope and returns a tensor of shape (batch_size, num_actions) with values of every action. lr: float learning rate for adam optimizer max_timesteps: int number of env steps to optimizer for buffer_size: int size of the replay buffer exploration_fraction: float fraction of entire training period over which the exploration rate is annealed exploration_final_eps: float final value of random action probability train_freq: int update the model every `train_freq` steps. set to None to disable printing batch_size: int size of a batched sampled from replay buffer for training print_freq: int how often to print out training progress set to None to disable printing checkpoint_freq: int how often to save the model. This is so that the best version is restored at the end of the training. If you do not wish to restore the best version at the end of the training set this variable to None. learning_starts: int how many steps of the model to collect transitions for before learning starts gamma: float discount factor target_network_update_freq: int update the target network every `target_network_update_freq` steps. prioritized_replay: True if True prioritized replay buffer will be used. prioritized_replay_alpha: float alpha parameter for prioritized replay buffer prioritized_replay_beta0: float initial value of beta for prioritized replay buffer prioritized_replay_beta_iters: int number of iterations over which beta will be annealed from initial value to 1.0. If set to None equals to max_timesteps. prioritized_replay_eps: float epsilon to add to the TD errors when updating priorities. callback: (locals, globals) -> None function called at every steps with state of the algorithm. If callback returns true training stops. Returns ------- act: ActWrapper Wrapper over act function. Adds ability to save it and load it. See header of baselines/deepq/categorical.py for details on the act function. """ # Create all the functions necessary to train the model sess = tf.Session() sess.__enter__() # capture the shape outside the closure so that the env object is not serialized # by cloudpickle when serializing make_obs_ph observation_space_shape = env.observation_space.shape def make_obs_ph(name): return U.BatchInput(observation_space_shape, name=name) act, train, update_target, debug = deepq.build_sobolev_train( make_obs_ph=make_obs_ph, q_func=q_func, num_actions=env.action_space.n, optimizer=tf.train.AdamOptimizer(learning_rate=lr), gamma=gamma, grad_norm_clipping=grad_norm_clipping, param_noise=param_noise, alpha=alpha) act_params = { 'make_obs_ph': make_obs_ph, 'q_func': q_func, 'num_actions': env.action_space.n, } act = ActWrapper(act, act_params) # Create the replay buffer ''' if prioritized_replay: replay_buffer = PrioritizedReplayBuffer(buffer_size, alpha=prioritized_replay_alpha) if prioritized_replay_beta_iters is None: prioritized_replay_beta_iters = max_timesteps beta_schedule = LinearSchedule(prioritized_replay_beta_iters, initial_p=prioritized_replay_beta0, final_p=1.0) else: replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None # Create the schedule for exploration starting from 1. exploration = LinearSchedule(schedule_timesteps=int(exploration_fraction * max_timesteps), initial_p=1.0, final_p=exploration_final_eps) ''' replay_buffer = ReplayBuffer(buffer_size) beta_schedule = None exploration = ConstantSchedule(epsilon) # Initialize the parameters and copy them to the target network. U.initialize() update_target() episode_rewards = [0.0] episode_lengths = [0.0] saved_mean_reward = None obs = env.reset() reset = True with tempfile.TemporaryDirectory() as td: model_saved = False model_file = os.path.join(td, "model") e = 0 # num of current episode t = 0 # timestep while e < max_episodes: if callback is not None: if callback(locals(), globals()): break # Take action and update exploration to the newest value kwargs = {} if not param_noise: update_eps = exploration.value(t) update_param_noise_threshold = 0. else: update_eps = 0. # Compute the threshold such that the KL divergence between perturbed and non-perturbed # policy is comparable to eps-greedy exploration with eps = exploration.value(t). # See Appendix C.1 in Parameter Space Noise for Exploration, Plappert et al., 2017 # for detailed explanation. update_param_noise_threshold = -np.log(1. - exploration.value( t) + exploration.value(t) / float(env.action_space.n)) kwargs['reset'] = reset kwargs[ 'update_param_noise_threshold'] = update_param_noise_threshold kwargs['update_param_noise_scale'] = True action = act(np.array(obs)[None], update_eps=update_eps, **kwargs)[0] env_action = action reset = False new_obs, rew, done, _ = env.step(env_action) # Store transition in the replay buffer. replay_buffer.add(obs, action, rew, new_obs, float(done)) obs = new_obs episode_rewards[-1] += rew episode_lengths[-1] += 1 if done: obs = env.reset() episode_rewards.append(0.0) episode_lengths.append(0.0) reset = True if t > learning_starts and t % train_freq == 0: # Minimize the error in Bellman's equation on a batch sampled from replay buffer. if prioritized_replay: experience = replay_buffer.sample( batch_size, beta=beta_schedule.value(t)) (obses_t, actions, rewards, obses_tp1, dones, weights, batch_idxes) = experience else: obses_t, actions, rewards, obses_tp1, dones = replay_buffer.sample( batch_size) weights, batch_idxes = np.ones_like(rewards), None td_errors = train(obses_t, actions, rewards, obses_tp1, dones, weights) if prioritized_replay: new_priorities = np.abs(td_errors) + prioritized_replay_eps replay_buffer.update_priorities(batch_idxes, new_priorities) if t > learning_starts and t % target_network_update_freq == 0: # Update target network periodically. update_target() mean_100ep_reward = round(np.mean(episode_rewards[-101:-1]), 1) num_episodes = len(episode_rewards) # increment counters t += 1 # increment timestep if done: e += 1 # increment episode if done and print_freq is not None and len( episode_rewards) % print_freq == 0: logger.record_tabular("steps", t) logger.record_tabular("episodes", num_episodes) logger.record_tabular("mean 100 episode reward", mean_100ep_reward) logger.record_tabular("% time spent exploring", int(100 * exploration.value(t))) logger.dump_tabular() if (checkpoint_freq is not None and t > learning_starts and num_episodes > 100 and t % checkpoint_freq == 0): if saved_mean_reward is None or mean_100ep_reward > saved_mean_reward: if print_freq is not None: logger.log( "Saving model due to mean reward increase: {} -> {}" .format(saved_mean_reward, mean_100ep_reward)) U.save_state(model_file) model_saved = True saved_mean_reward = mean_100ep_reward if model_saved: if print_freq is not None: logger.log("Restored model with mean reward: {}".format( saved_mean_reward)) U.load_state(model_file) return act