def load_data(model_dir, cache_data=False, dataspec=None, hparams=None, data=None, preprocessor=None): if dataspec is not None: ds = DataSpec.load(dataspec) else: ds = DataSpec.load(os.path.join(model_dir, "dataspec.yaml")) if hparams is not None: hp = HParams.load(hparams) else: hp = HParams.load(os.path.join(model_dir, "hparams.yaml")) if data is not None: data_path = data else: data_path = os.path.join(model_dir, 'data.pkl') if os.path.exists(data_path): train, valid, test = read_pkl(data_path) else: train, valid, test = chip_exo_nexus(ds, peak_width=hp.data.peak_width, shuffle=hp.data.shuffle, valid_chr=hp.data.valid_chr, test_chr=hp.data.test_chr) # Pre-process the data logger.info("Pre-processing the data") if preprocessor is not None: preproc_path = os.path.join(model_dir, "preprocessor.pkl") else: preproc_path = preprocessor preproc = read_pkl(preproc_path) train[1] = preproc.transform(train[1]) valid[1] = preproc.transform(valid[1]) try: test[1] = preproc.transform(test[1]) except Exception: logger.warn("Test set couldn't be processed") test = None return train, valid, test
def imp_score(model_dir, output_file, method="grad", split='all', batch_size=512, num_workers=10, h5_chunk_size=512, max_batches=-1, shuffle_seq=False, memfrac=0.45, exclude_chr='', overwrite=False, gpu=None): """Run importance scores for a BPNet model Args: model_dir: path to the model directory output_file: output file path (HDF5 format) method: which importance scoring method to use ('grad', 'deeplift' or 'ism') split: for which dataset split to compute the importance scores h5_chunk_size: hdf5 chunk size. exclude_chr: comma-separated list of chromosomes to exclude overwrite: if True, overwrite the output directory gpu (int): which GPU to use locally. If None, GPU is not used """ add_file_logging(os.path.dirname(output_file), logger, 'modisco-score') if gpu is not None: create_tf_session(gpu, per_process_gpu_memory_fraction=memfrac) else: # Don't use any GPU's os.environ['CUDA_VISIBLE_DEVICES'] = '' if os.path.exists(output_file): if overwrite: os.remove(output_file) else: raise ValueError(f"File exists {output_file}. Use overwrite=True to overwrite it") if exclude_chr: exclude_chr = exclude_chr.split(",") else: exclude_chr = [] # load the config files logger.info("Loading the config files") model_dir = Path(model_dir) hp = HParams.load(model_dir / "hparams.yaml") ds = DataSpec.load(model_dir / "dataspec.yaml") tasks = list(ds.task_specs) # validate that the correct dataset was used if hp.data.name != 'get_StrandedProfile_datasets': logger.warn("hp.data.name != 'get_StrandedProfile_datasets'") if split == 'valid': assert len(exclude_chr) == 0 incl_chromosomes = hp.data.kwargs['valid_chr'] excl_chromosomes = None elif split == 'test': assert len(exclude_chr) == 0 incl_chromosomes = hp.data.kwargs['test_chr'] excl_chromosomes = None elif split == 'train': assert len(exclude_chr) == 0 incl_chromosomes = None excl_chromosomes = hp.data.kwargs['valid_chr'] + hp.data.kwargs['test_chr'] + hp.data.kwargs.get('exclude_chr', []) elif split == 'all': incl_chromosomes = None excl_chromosomes = hp.data.kwargs.get('exclude_chr', []) + exclude_chr logger.info("Excluding chromosomes: {excl_chromosomes}") else: raise ValueError("split needs to be from {train,valid,test,all}") logger.info("Creating the dataset") from basepair.datasets import StrandedProfile seq_len = hp.data.kwargs['peak_width'] dl_valid = StrandedProfile(ds, incl_chromosomes=incl_chromosomes, excl_chromosomes=excl_chromosomes, peak_width=seq_len, shuffle=False, target_transformer=None) bpnet = BPNet.from_mdir(model_dir) writer = HDF5BatchWriter(output_file, chunk_size=h5_chunk_size) for i, batch in enumerate(tqdm(dl_valid.batch_iter(batch_size=batch_size, num_workers=num_workers))): if max_batches > 0: logging.info(f"max_batches: {max_batches} exceeded. Stopping the computation") if i > max_batches: break # append the bias model predictions # (batch['inputs'], batch['targets']) = bm((batch['inputs'], batch['targets'])) # store the original batch containing 'inputs' and 'targets' wdict = batch if shuffle_seq: # Di-nucleotide shuffle the sequences if 'seq' in batch['inputs']: batch['inputs']['seq'] = onehot_dinucl_shuffle(batch['inputs']['seq']) else: batch['inputs'] = onehot_dinucl_shuffle(batch['inputs']) # loop through all tasks, pred_summary and strands for task_i, task in enumerate(tasks): for pred_summary in ['count', 'weighted']: # figure out the number of channels nstrands = batch['targets'][f'profile/{task}'].shape[-1] strand_hash = ["pos", "neg"] for strand_i in range(nstrands): hyp_imp = bpnet.imp_score(batch['inputs'], task=task, strand=strand_hash[strand_i], method=method, pred_summary=pred_summary, batch_size=None) # don't second-batch # put importance scores to the dictionary wdict[f"/hyp_imp/{task}/{pred_summary}/{strand_i}"] = hyp_imp writer.batch_write(wdict) writer.close()
def evaluate(model_dir, output_dir=None, gpu=0, exclude_metrics=False, splits=['train', 'valid'], model_path=None, data=None, hparams=None, dataspec=None, preprocessor=None): """ Args: model_dir: path to the model directory splits: For which data splits to compute the evaluation metrics model_metrics: if True, metrics computed using mode.evaluate(..) """ if gpu is not None: create_tf_session(gpu) if dataspec is not None: ds = DataSpec.load(dataspec) else: ds = DataSpec.load(os.path.join(model_dir, "dataspec.yaml")) if hparams is not None: hp = HParams.load(hparams) else: hp = HParams.load(os.path.join(model_dir, "hparams.yaml")) if model_path is not None: model = load_model(model_path) else: model = load_model(os.path.join(model_dir, "model.h5")) if output_dir is None: output_dir = os.path.join(model_dir, "eval") train, valid, test = load_data(model_dir, dataspec=dataspec, hparams=hparams, data=data, preprocessor=preprocessor) data = dict(train=train, valid=valid, test=test) metrics = {} profile_metrics = [] os.makedirs(os.path.join(output_dir, "plots"), exist_ok=True) for split in tqdm(splits): y_pred = model.predict(data[split][0]) y_true = data[split][1] if not exclude_metrics: eval_metrics_values = model.evaluate(data[split][0], data[split][1]) eval_metrics = dict(zip(_listify(model.metrics_names), _listify(eval_metrics_values))) eval_metrics = {split + "/" + k.replace("_", "/"): v for k, v in eval_metrics.items()} metrics = {**eval_metrics, **metrics} for task in ds.task_specs: # Counts yp = y_pred[ds.task2idx(task, "counts")].sum(axis=-1) yt = y_true["counts/" + task].sum(axis=-1) # compute the correlation rp = pearsonr(yt, yp)[0] rs = spearmanr(yt, yp)[0] metrics = {**metrics, split + f"/counts/{task}/pearsonr": rp, split + f"/counts/{task}/spearmanr": rs, } fig = plt.figure(figsize=(5, 5)) plt.scatter(yp, yt, alpha=0.5) plt.xlabel("Predicted") plt.ylabel("Observed") plt.title(f"R_pearson={rp:.2f}, R_spearman={rs:.2f}") plt.savefig(os.path.join(output_dir, f"plots/counts.{split}.{task}.png")) # Profile yp = softmax(y_pred[ds.task2idx(task, "profile")]) yt = y_true["profile/" + task] df = eval_profile(yt, yp, pos_min_threshold=hp.evaluate.pos_min_threshold, neg_max_threshold=hp.evaluate.neg_max_threshold, required_min_pos_counts=hp.evaluate.required_min_pos_counts, binsizes=hp.evaluate.binsizes) df['task'] = task df['split'] = split # Evaluate for the smallest binsize auprc_min = df[df.binsize == min(hp.evaluate.binsizes)].iloc[0].auprc metrics[split + f'/profile/{task}/auprc'] = auprc_min profile_metrics.append(df) # Write the count metrics write_json(metrics, os.path.join(output_dir, "metrics.json")) # write the profile metrics dfm = pd.concat(profile_metrics) dfm.to_csv(os.path.join(output_dir, "profile_metrics.tsv"), sep='\t', index=False) return dfm, metrics
def hparams(): return HParams(train=TrainHParams(epochs=2, batch_size=2), data=DataHParams(valid_chr=['chr1'], test_chr=[], peak_width=10))