예제 #1
0
    def measure(self, a, b):
        a, b = Point(a), Point(b)

        lat1, lng1 = radians(degrees=a.latitude), radians(degrees=a.longitude)
        lat2, lng2 = radians(degrees=b.latitude), radians(degrees=b.longitude)
        
        sin_lat1, cos_lat1 = sin(lat1), cos(lat1)
        sin_lat2, cos_lat2 = sin(lat2), cos(lat2)
        
        delta_lng = lng2 - lng1
        cos_delta_lng, sin_delta_lng = cos(delta_lng), sin(delta_lng)
        
        central_angle = acos(
            # We're correcting from floating point rounding errors on very-near and exact points here
            min(1.0, sin_lat1 * sin_lat2 +
                     cos_lat1 * cos_lat2 * cos_delta_lng))
        
        # From http://en.wikipedia.org/wiki/Great_circle_distance:
        #   Historically, the use of this formula was simplified by the
        #   availability of tables for the haversine function. Although this
        #   formula is accurate for most distances, it too suffers from
        #   rounding errors for the special (and somewhat unusual) case of
        #   antipodal points (on opposite ends of the sphere). A more
        #   complicated formula that is accurate for all distances is: (below)
        
        d = atan2(sqrt((cos_lat2 * sin_delta_lng) ** 2 +
                       (cos_lat1 * sin_lat2 -
                        sin_lat1 * cos_lat2 * cos_delta_lng) ** 2),
                  sin_lat1 * sin_lat2 + cos_lat1 * cos_lat2 * cos_delta_lng)
        
        return self.RADIUS * d
예제 #2
0
    def destination(self, point, bearing, distance=None):
        point = Point(point)
        lat1 = units.radians(degrees=point.latitude)
        lng1 = units.radians(degrees=point.longitude)
        bearing = units.radians(degrees=bearing)

        if distance is None:
            distance = self
        if isinstance(distance, Distance):
            distance = distance.kilometers

        d_div_r = float(distance) / self.RADIUS

        lat2 = asin(
            sin(lat1) * cos(d_div_r) +
            cos(lat1) * sin(d_div_r) * cos(bearing)
        )

        lng2 = lng1 + atan2(
            sin(bearing) * sin(d_div_r) * cos(lat1),
            cos(d_div_r) - sin(lat1) * sin(lat2)
        )

        return Point(units.degrees(radians=lat2), units.degrees(radians=lng2))
예제 #3
0
    def destination(self, point, bearing, distance=None):
        point = Point(point)
        lat1 = units.radians(degrees=point.latitude)
        lng1 = units.radians(degrees=point.longitude)
        bearing = units.radians(degrees=bearing)

        if distance is None:
            distance = self
        if isinstance(distance, Distance):
            distance = distance.kilometers
        
        ellipsoid = self.ELLIPSOID
        if isinstance(ellipsoid, basestring):
            ellipsoid = ELLIPSOIDS[ellipsoid]

        major, minor, f = ellipsoid
        
        tan_reduced1 = (1 - f) * tan(lat1)
        cos_reduced1 = 1 / sqrt(1 + tan_reduced1 ** 2)
        sin_reduced1 = tan_reduced1 * cos_reduced1
        sin_bearing, cos_bearing = sin(bearing), cos(bearing)
        sigma1 = atan2(tan_reduced1, cos_bearing)
        sin_alpha = cos_reduced1 * sin_bearing
        cos_sq_alpha = 1 - sin_alpha ** 2
        u_sq = cos_sq_alpha * (major ** 2 - minor ** 2) / minor ** 2
        
        A = 1 + u_sq / 16384. * (
            4096 + u_sq * (-768 + u_sq * (320 - 175 * u_sq))
        )
        B = u_sq / 1024. * (256 + u_sq * (-128 + u_sq * (74 - 47 * u_sq)))
        
        sigma = distance / (minor * A)
        sigma_prime = 2 * pi

        while abs(sigma - sigma_prime) > 10e-12:
            cos2_sigma_m = cos(2 * sigma1 + sigma)
            sin_sigma, cos_sigma = sin(sigma), cos(sigma)
            delta_sigma = B * sin_sigma * (
                cos2_sigma_m + B / 4. * (
                    cos_sigma * (
                        -1 + 2 * cos2_sigma_m
                    ) - B / 6. * cos2_sigma_m * (
                        -3 + 4 * sin_sigma ** 2) * (
                        -3 + 4 * cos2_sigma_m ** 2
                    )
                )
            )
            sigma_prime = sigma
            sigma = distance / (minor * A) + delta_sigma

        sin_sigma, cos_sigma = sin(sigma), cos(sigma)

        lat2 = atan2(
            sin_reduced1 * cos_sigma + cos_reduced1 * sin_sigma * cos_bearing,
            (1 - f) * sqrt(
                sin_alpha ** 2 + (
                    sin_reduced1 * sin_sigma -
                    cos_reduced1 * cos_sigma * cos_bearing
                ) ** 2
            )
        )

        lambda_lng = atan2(
            sin_sigma * sin_bearing,
            cos_reduced1 * cos_sigma - sin_reduced1 * sin_sigma * cos_bearing
        )

        C = f / 16. * cos_sq_alpha * (4 + f * (4 - 3 * cos_sq_alpha))

        delta_lng = (
            lambda_lng - (1 - C) * f * sin_alpha * (
                sigma + C * sin_sigma * (
                    cos2_sigma_m + C * cos_sigma * (
                        -1 + 2 * cos2_sigma_m ** 2
                    )
                )
            )
        )

        final_bearing = atan2(
            sin_alpha,
            cos_reduced1 * cos_sigma * cos_bearing - sin_reduced1 * sin_sigma
        )

        lng2 = lng1 + delta_lng
        
        return Point(units.degrees(radians=lat2), units.degrees(radians=lng2))
예제 #4
0
    def measure(self, a, b):
        a, b = Point(a), Point(b)
        lat1, lng1 = radians(degrees=a.latitude), radians(degrees=a.longitude)
        lat2, lng2 = radians(degrees=b.latitude), radians(degrees=b.longitude)

        if isinstance(self.ELLIPSOID, basestring):
            major, minor, f = ELLIPSOIDS[self.ELLIPSOID]
        else:
            major, minor, f = self.ELLIPSOID

        delta_lng = lng2 - lng1

        reduced_lat1 = atan((1 - f) * tan(lat1))
        reduced_lat2 = atan((1 - f) * tan(lat2))

        sin_reduced1, cos_reduced1 = sin(reduced_lat1), cos(reduced_lat1)
        sin_reduced2, cos_reduced2 = sin(reduced_lat2), cos(reduced_lat2)

        lambda_lng = delta_lng
        lambda_prime = 2 * pi

        iter_limit = 20

        while abs(lambda_lng - lambda_prime) > 10e-12 and iter_limit > 0:
            sin_lambda_lng, cos_lambda_lng = sin(lambda_lng), cos(lambda_lng)

            sin_sigma = sqrt(
                (cos_reduced2 * sin_lambda_lng) ** 2 +
                (cos_reduced1 * sin_reduced2 -
                 sin_reduced1 * cos_reduced2 * cos_lambda_lng) ** 2
            )

            if sin_sigma == 0:
                return 0 # Coincident points

            cos_sigma = (
                sin_reduced1 * sin_reduced2 +
                cos_reduced1 * cos_reduced2 * cos_lambda_lng
            )

            sigma = atan2(sin_sigma, cos_sigma)

            sin_alpha = (
                cos_reduced1 * cos_reduced2 * sin_lambda_lng / sin_sigma
            )
            cos_sq_alpha = 1 - sin_alpha ** 2

            if cos_sq_alpha != 0:
                cos2_sigma_m = cos_sigma - 2 * (
                    sin_reduced1 * sin_reduced2 / cos_sq_alpha
                )
            else:
                cos2_sigma_m = 0.0 # Equatorial line

            C = f / 16. * cos_sq_alpha * (4 + f * (4 - 3 * cos_sq_alpha))

            lambda_prime = lambda_lng
            lambda_lng = (
                delta_lng + (1 - C) * f * sin_alpha * (
                    sigma + C * sin_sigma * (
                        cos2_sigma_m + C * cos_sigma * (
                            -1 + 2 * cos2_sigma_m ** 2
                        )
                    )
                )
            )
            iter_limit -= 1

        if iter_limit == 0:
            raise ValueError("Vincenty formula failed to converge!")

        u_sq = cos_sq_alpha * (major ** 2 - minor ** 2) / minor ** 2

        A = 1 + u_sq / 16384. * (
            4096 + u_sq * (-768 + u_sq * (320 - 175 * u_sq))
        )

        B = u_sq / 1024. * (256 + u_sq * (-128 + u_sq * (74 - 47 * u_sq)))

        delta_sigma = (
            B * sin_sigma * (
                cos2_sigma_m + B / 4. * (
                    cos_sigma * (
                        -1 + 2 * cos2_sigma_m ** 2
                    ) - B / 6. * cos2_sigma_m * (
                        -3 + 4 * sin_sigma ** 2
                    ) * (
                        -3 + 4 * cos2_sigma_m ** 2
                    )
                )
            )
        )

        s = minor * A * (sigma - delta_sigma)
        return s