예제 #1
0
def XXVar(statesDir: str, outDir: str, NA, theta, phi):
    maxBondDim = 100
    res = np.zeros(2, dtype=complex)
    U = tn.Node(
        np.matmul(ru.getUPhi(np.pi * phi / 2, 2),
                  ru.getUTheta(np.pi * theta / 2, 2)))
    with open(statesDir + 'psiXX_NA_' + str(NA) + '_NB_' + str(NA), 'rb') as f:
        psi = pickle.load(f)
    psiCopy = bops.relaxState(psi, 64)
    res[0] = bops.getOverlap(psi, psiCopy)
    bops.removeState(psi)
    for i in range(NA):
        psiCopy[i] = bops.permute(
            bops.multiContraction(psiCopy[i], U, '1', '0'), [0, 2, 1])
    doublePsi = [None for j in range(len(psiCopy))]
    for j in range(len(psiCopy)):
        doublePsi[j] = doubleMPSSite(psiCopy[j])
    doubleCopy = bops.copyState(doublePsi)
    for j in range(NA):
        doublePsi[j] = bops.permute(
            bops.multiContraction(doublePsi[j], E, '1', '0', cleanOr1=True),
            [0, 2, 1])
    res[1] = bops.getOverlap(doublePsi, doubleCopy)

    with open(
            outDir + 'XXVar_NA_' + str(NA) + '_t_' + str(theta) + '_p_' +
            str(phi), 'wb') as f:
        pickle.dump(res, f)
    print(res)
예제 #2
0
파일: PEPS.py 프로젝트: NoaFeldman/DMRG_py
def getBMPSRowOps(GammaC, LambdaC, GammaD, LambdaD, AEnv, BEnv, steps):
    convergence = []
    envOpAB = bops.permute(bops.multiContraction(AEnv, BEnv, '1', '3'),
                           [0, 3, 2, 4, 1, 5])
    envOpBA = bops.permute(bops.multiContraction(BEnv, AEnv, '1', '3'),
                           [0, 3, 2, 4, 1, 5])
    op = envOpBA
    for i in range(steps):
        oldGammaC, oldLambdaC, oldGammaD, oldLambdaD = GammaC, LambdaC, GammaD, LambdaD
        GammaC, LambdaC, GammaD, LambdaD = bmpsRowStep(GammaC, LambdaC, GammaD,
                                                       LambdaD, op)
        GammaD, LambdaD, GammaC, LambdaC = bmpsRowStep(GammaD, LambdaD, GammaC,
                                                       LambdaC, op)
        # if i > 0:
        #     convergence.append(
        #         checkConvergence(oldGammaC, oldLambdaC, oldGammaD, oldLambdaD, GammaC, LambdaC, GammaD, LambdaD, 2))
        bops.removeState([oldGammaC, oldLambdaC, oldGammaD, oldLambdaD])

    # cUp = bops.multiContraction(GammaC, LambdaC, '2', '0', isDiag2=True)
    # dUp = bops.multiContraction(GammaD, LambdaD, '2', '0', isDiag2=True)
    # GammaC, LambdaC, GammaD, LambdaD = bmpsRowStep(GammaC, LambdaC, GammaD, LambdaD, op)
    # cDown = bops.multiContraction(GammaC, LambdaC, '2', '0', isDiag2=True)
    # dDown = bops.multiContraction(GammaD, LambdaD, '2', '0', isDiag2=True)
    bops.removeState([
        GammaC, LambdaC, GammaD, LambdaD, oldGammaC, oldLambdaC, oldGammaD,
        oldLambdaD
    ])
    return GammaC, LambdaC, GammaD, LambdaD
예제 #3
0
def applyHToM(HL, HR, H, M, k):
    k1 = k
    k2 = k + 1

    # Add HL.opSum x h.identity(k1) x h.identity(k2) x I(Right)
    # and I(Left) x h.identity(k1) x h.identity(k2) x HR.opSum
    Hv = bops.multiContraction(HL.opSum, M, '0', '0')
    Hv = bops.addNodes(Hv, bops.multiContraction(M, HR.opSum, '3', '0'))

    # Add I(Left) x h.single(k1) x h.identity(k2) x I(Right)
    # And I(Left) x h.identity(k1) x h.single(k2) x I(Right)
    Hv = bops.addNodes(Hv, \
                       bops.permute(bops.multiContraction(M, H.singles[k1], '1', '0'), [0, 3, 1, 2]))
    Hv = bops.addNodes(Hv, \
                       bops.permute(bops.multiContraction(M, H.singles[k2], '2', '0'), [0, 1, 3, 2]))

    # Add HL.openOp x h.r2l(k1) x h.identity(k2) x I(Right)
    # And I(Left) x h.identity(k1) x h.l2r(k2) x HR.openOp
    HK1R2L = bops.permute(bops.multiContraction(M, H.r2l[k1], '1', '0'), [0, 4, 3, 1, 2])
    Hv = bops.addNodes(Hv, \
                       bops.multiContraction(HL.openOp, HK1R2L, '02', '01'))
    HK2L2R = bops.permute(bops.multiContraction(M, H.l2r[k2], '2', '0'), [0, 1, 3, 4, 2])
    Hv = bops.addNodes(Hv, \
                       bops.multiContraction(HK2L2R, HR.openOp, '43', '02'))

    # Add I(Left) x h.l2r(k1) x h.r2l(k2) x I(Right)
    HK1K2 = bops.multiContraction(M, H.l2r[k1], '1', '0')
    HK1K2 = bops.multiContraction(HK1K2, H.r2l[k2], '14', '02')
    HK1K2 = bops.permute(HK1K2, [0, 2, 3, 1])
    Hv = bops.addNodes(Hv, HK1K2)

    return Hv
예제 #4
0
파일: DMRG.py 프로젝트: ZENG-Hui/DMRG_py
def getTridiagonal(HL, HR, H, k, psi, psiCompare=None):
    accuracy = 1e-10 # 1e-12

    v = bops.multiContraction(psi[k], psi[k + 1], '2', '0')
    # Small innaccuracies ruin everything!
    v.set_tensor(v.get_tensor() / bops.getNodeNorm(v))

    psiCopy = bops.copyState(psi)

    base = []
    base.append(v)
    Hv = applyHToM(HL, HR, H, v, k)
    alpha = bops.multiContraction(v, Hv, '0123', '0123*').get_tensor()

    if psiCompare is not None:
        copyV = bops.copyState([v])[0]
        psiCopy = bops.assignNewSiteTensors(psiCopy, k, copyV, '>>')[0]

    E = stateEnergy(psi, H)

    w = bops.addNodes(Hv, bops.multNode(v, -alpha))
    beta = bops.getNodeNorm(w)

    # Start with T as an array and turn into tridiagonal matrix at the end.
    Tarr = [[0, 0, 0]]
    Tarr[0][1] = alpha
    counter = 0
    formBeta = 2 * beta # This is just some value to init formBeta > beta.
    while (beta > accuracy) and (counter <= 50) and (beta < formBeta):
        Tarr[counter][2] = beta
        Tarr.append([0, 0, 0])
        Tarr[counter + 1][0] = beta
        counter += 1

        v = bops.multNode(w, 1 / beta)
        base.append(v)

        if psiCompare is not None:
            copyV = bops.copyState([v])[0]
            psiCopy = bops.assignNewSiteTensors(psiCopy, k, copyV, '>>')[0]
        Hv = applyHToM(HL, HR, H, v, k)

        alpha = bops.multiContraction(v, Hv, '0123', '0123*').get_tensor()
        Tarr[counter][1] = alpha
        w = bops.addNodes(bops.addNodes(Hv, bops.multNode(v, -alpha)), \
                          bops.multNode(base[counter-1], -beta))
        formBeta = beta
        beta = bops.getNodeNorm(w)
    T = np.zeros((len(Tarr), len(Tarr)), dtype=complex)
    T[0][0] = Tarr[0][1]
    if len(Tarr) > 1:
        T[0][1] = Tarr[0][2]
    for i in range(1, len(Tarr)-1):
        T[i][i-1] = Tarr[i][0]
        T[i][i] = Tarr[i][1]
        T[i][i+1] = Tarr[i][2]
    T[len(Tarr)-1][len(Tarr)-2] = Tarr[len(Tarr)-1][0]
    T[len(Tarr) - 1][len(Tarr) - 1] = Tarr[len(Tarr) - 1][1]
    return [T, base]
예제 #5
0
def getEMatrix(psi, startInd, endInd):
    psiDagger = bops.copyState(psi, conj=True)
    E = bops.multiContraction(psi[startInd], psiDagger[startInd], [1], [1])
    for i in range(startInd + 1, endInd + 1):
        E = bops.multiContraction(
            E, bops.multiContraction(psi[i], psiDagger[i], [1], [1]), [1, 3],
            [0, 2])
    bops.removeState(psiDagger)
    return E
예제 #6
0
def applyVecsToSite(site: tn.Node, vecUp: np.array, vecDown: np.array):
    up = bops.multiContraction(site, tn.Node(vecUp), '4', '0', cleanOr2=True)
    down = bops.multiContraction(site,
                                 tn.Node(vecDown),
                                 '4*',
                                 '0*',
                                 cleanOr2=True)
    dm = tn.Node(np.kron(up.tensor, down.tensor))
    return dm
예제 #7
0
def applyLocalOperators(cUp, dUp, cDown, dDown, leftRow, rightRow, A, B, l,
                        ops):
    left = leftRow
    for i in range(l):
        left = bops.multiContraction(left, cUp, '3', '0', cleanOr1=True)
        leftUp = applyOpTosite(B, ops[i * 4])
        leftDown = applyOpTosite(A, ops[i * 4 + 1])
        left = bops.multiContraction(left, leftUp, '23', '30', cleanOr1=True)
        left = bops.multiContraction(left, leftDown, '14', '30', cleanOr1=True)
        left = bops.permute(
            bops.multiContraction(left, dDown, '04', '21', cleanOr1=True),
            [3, 2, 1, 0])

        left = bops.multiContraction(left, dUp, '3', '0', cleanOr1=True)
        rightUp = applyOpTosite(A, ops[i * 4 + 2])
        rightDown = applyOpTosite(B, ops[i * 4 + 3])
        left = bops.multiContraction(left, rightUp, '23', '30', cleanOr1=True)
        left = bops.multiContraction(left,
                                     rightDown,
                                     '14',
                                     '30',
                                     cleanOr1=True)
        left = bops.permute(
            bops.multiContraction(left, cDown, '04', '21', cleanOr1=True),
            [3, 2, 1, 0])

        bops.removeState([leftUp, leftDown, rightDown, rightUp])

    return bops.multiContraction(left, rightRow, '0123', '3210').tensor * 1
예제 #8
0
파일: PEPS.py 프로젝트: NoaFeldman/DMRG_py
def getRowDM(GammaL, LambdaL, GammaR, LambdaR, sites, d):
    c = bops.multiContraction(bops.multiContraction(LambdaR,
                                                    GammaL,
                                                    '1',
                                                    '0',
                                                    isDiag1=True),
                              LambdaL,
                              '2',
                              '0',
                              isDiag2=True)
    row = bops.multiContraction(bops.multiContraction(c, GammaR, '2', '0'),
                                LambdaR,
                                '3',
                                '0',
                                isDiag2=True)
    for i in range(sites):
        row = bops.multiContraction(row, GammaL, [len(row.edges) - 1], [0])
        row = bops.multiContraction(row,
                                    LambdaL, [len(row.edges) - 1], [0],
                                    isDiag2=True)
        row = bops.multiContraction(row, GammaR, [len(row.edges) - 1], [0])
        row = bops.multiContraction(row,
                                    LambdaR, [len(row.edges) - 1], [0],
                                    isDiag2=True)
    dm = bops.multiContraction(row, row, [0, len(row.edges) - 1],
                               [0, len(row.edges) - 1, '*'])
    rho = np.reshape(dm.tensor, [d**((2 + 2 * sites)), d**((2 + 2 * sites))])
    return rho / np.trace(rho)
예제 #9
0
def expectationValue(currSites, op):
    left = leftRow
    for i in range(l):
        left = bops.multiContraction(left, cUp, '3', '0', cleanOr1=True)
        leftUp = toricCode.applyOpTosite(currSites[0][i * 2], op)
        leftDown = toricCode.applyOpTosite(currSites[1][i * 2], op)
        left = bops.multiContraction(left, leftUp, '23', '30', cleanOr1=True)
        left = bops.multiContraction(left, leftDown, '14', '30', cleanOr1=True)
        left = bops.permute(
            bops.multiContraction(left, dDown, '04', '21', cleanOr1=True),
            [3, 2, 1, 0])

        left = bops.multiContraction(left, dUp, '3', '0', cleanOr1=True)
        rightUp = toricCode.applyOpTosite(currSites[0][i * 2 + 1], op)
        rightDown = toricCode.applyOpTosite(currSites[1][i * 2 + 1], op)
        left = bops.multiContraction(left, rightUp, '23', '30', cleanOr1=True)
        left = bops.multiContraction(left,
                                     rightDown,
                                     '14',
                                     '30',
                                     cleanOr1=True)
        left = bops.permute(
            bops.multiContraction(left, cDown, '04', '21', cleanOr1=True),
            [3, 2, 1, 0])

        bops.removeState([leftUp, leftDown, rightDown, rightUp])
    return bops.multiContraction(left, rightRow, '0123', '3210').tensor * 1
예제 #10
0
def getIdentity(psi, k, dir):
    psil = bops.copyState([psi[k]])[0]
    psilCopy = bops.copyState([psi[k]], conj=True)[0]
    if dir == '>>':
        result = bops.multiContraction(psil, psilCopy, '01', '01').tensor
    else:
        result = bops.multiContraction(psil, psilCopy, '12', '12').tensor
    for i in range(len(result)):
        for j in range(len(result[0])):
            result[i][j] = round(result[i][j], 2)
    return result
예제 #11
0
def projectS(psi, AEnd):
    projector0Tensor = np.zeros((2, 2))
    projector0Tensor[0, 0] = 1
    projector0 = tn.Node(projector0Tensor, backend=None)
    projector1Tensor = np.zeros((2, 2))
    projector1Tensor[1, 1] = 1
    projector1 = tn.Node(projector1Tensor, backend=None)
    for i in range(AEnd + 1):
        if i % 2 == 0:
            psi[i] = bops.permute(bops.multiContraction(psi[i], projector0, [1], [0]), [0, 2, 1])
        else:
            psi[i] = bops.permute(bops.multiContraction(psi[i], projector1, [1], [0]), [0, 2, 1])
예제 #12
0
def horizontalPair(leftSite, rightSite, cleanLeft=True, cleanRight=True):
    pair = bops.multiContraction(leftSite,
                                 rightSite,
                                 '1',
                                 '3',
                                 cleanOr1=cleanLeft,
                                 cleanOr2=cleanRight)
    pair = bops.multiContraction(pair, ru.getPairUnitary(d), '37', '01')
    [left, right, te] = bops.svdTruncation(pair, [0, 1, 2, 6], [3, 4, 5, 7],
                                           '>>',
                                           maxBondDim=16)
    return bops.permute(left,
                        [0, 4, 1, 2, 3]), bops.permute(right, [1, 2, 3, 0, 4])
예제 #13
0
def getDensityMatrix(psi, A1Start, A1End, A2Start, A2End):
    psiCopy = bops.copyState(psi)
    for k in [len(psiCopy) - 1 - i for i in range(len(psiCopy) - A2End - 1)]:
        psiCopy = bops.shiftWorkingSite(psiCopy, k, '<<')
    E1 = getEMatrix(psiCopy, A1Start, A1End)
    bops.copyState([E1])
    N1, N1bar = getNMatrices(E1, 1)
    N1bar.edges[0].name += '*'
    E2 = getEMatrix(psiCopy, A2Start, A2End)
    N2, N2bar = getNMatrices(E2, 2)
    N2bar.edges[0].name += '*'
    res = bops.multiContraction(bops.multiContraction(N1, N1bar, [0], [1]),
                                bops.multiContraction(N2, N2bar, [1], [2]),
                                [0, 3], [0, 3])
    bops.removeState(psiCopy)
    return res
예제 #14
0
def stateEnergy(psi: List[tn.Node], H: HOp):
    E = 0
    for i in range(len(psi)):
        psiCopy = bops.copyState(psi)
        single_i = bops.copyState([H.singles[i]])[0]
        psiCopy[i] = bops.permute(tn.contract(psiCopy[i][1] ^ single_i[0], name=('site' + str(i))), [0, 2, 1])
        E += bops.getOverlap(psiCopy, psi)
        bops.removeState(psiCopy)
        tn.remove_node(single_i)
    for i in range(len(psi) - 1):
        psiCopy = bops.copyState(psi)
        r2l = bops.copyState([H.r2l[i+1]])[0]
        l2r = bops.copyState([H.l2r[i]])[0]
        psiCopy[i][2] ^ psiCopy[i+1][0]
        psiCopy[i][1] ^ l2r[0]
        r2l[0] ^ psiCopy[i+1][1]
        l2r[2] ^ r2l[2]
        M = tn.contract_between(psiCopy[i], \
                                tn.contract_between(l2r, tn.contract_between(r2l, psiCopy[i+1])))
        if bops.multiContraction(M, M, '0123', '0123*').tensor != 0:
            [psiCopy, te] = bops.assignNewSiteTensors(psiCopy, i, M, '>>')
            E += bops.getOverlap(psiCopy, psi)
        bops.removeState(psiCopy)
        tn.remove_node(r2l)
        tn.remove_node(l2r)
    return E
예제 #15
0
def expectationValues(psi: List[tn.Node], vs: List[List[np.array]]):
    vs = np.round(vs, 10)
    n = len(vs)
    NA = len(vs[0])
    result = 1
    # result = np.eye(2, dtype=complex)
    for copy in range(n):
        psiCopy = bops.copyState(psi)
        for alpha in range(NA - 1, -1, -1):
            overlap = np.matmul(vs[copy][alpha],
                                np.conj(vs[np.mod(copy + 1, n)][alpha]))
            toEstimate = np.outer(vs[copy][alpha],
                                  np.conj(vs[np.mod(copy + 1, n)][alpha]))
            if np.abs(np.round(overlap, 8)) == 2:
                toMeasure = toEstimate
            else:
                hermitianComponent = np.random.randint(2)
                if hermitianComponent:
                    toMeasure = (toEstimate +
                                 np.conj(np.transpose(toEstimate)))
                else:
                    toMeasure = (toEstimate -
                                 np.conj(np.transpose(toEstimate)))
            psiCopy[alpha] = bops.permute(bops.multiContraction(psiCopy[alpha], tn.Node(toMeasure), \
                                                   '1', '1'), [0, 2, 1])
            psiCopy = bops.shiftWorkingSite(psiCopy, alpha, '<<')
        result *= bops.getOverlap(psiCopy, psi)
        # result = np.matmul(result, toMeasure)
        bops.removeState(psiCopy)
    return result
예제 #16
0
파일: PEPS.py 프로젝트: NoaFeldman/DMRG_py
def twoCopiesEntanglement(circle, A, B):
    doubleCircle = tn.Node(np.kron(circle.tensor, circle.tensor))
    doubleA = tn.Node(np.kron(A.tensor, A.tensor))
    doubleB = tn.Node(np.kron(B.tensor, B.tensor))

    AEnv = tn.Node(np.trace(A.get_tensor(), axis1=0, axis2=5))
    BEnv = tn.Node(np.trace(B.get_tensor(), axis1=0, axis2=5))
    ABNet = bops.permute(
        bops.multiContraction(bops.multiContraction(BEnv, AEnv, '1', '3'),
                              bops.multiContraction(AEnv, BEnv, '1', '3'),
                              '15', '03'), [5, 1, 0, 2, 3, 6, 4, 7])
    n = bops.multiContraction(circle, ABNet, '01234567', '01234567').tensor

    p2 = bops.multiContraction(doubleCircle, ABNet, '01234567',
                               '01234567').tensor
    return p2
예제 #17
0
def verticalPair(topSite, bottomSite, cleanTop=True, cleanBottom=True):
    pair = bops.multiContraction(topSite,
                                 bottomSite,
                                 '2',
                                 '0',
                                 cleanOr1=cleanTop,
                                 cleanOr2=cleanBottom)
    pair = bops.multiContraction(pair,
                                 ru.getPairUnitary(d),
                                 '37',
                                 '01',
                                 cleanOr1=True,
                                 cleanOr2=True)
    [top, bottom, te] = bops.svdTruncation(pair, [0, 1, 2, 6], [3, 4, 5, 7],
                                           '>>',
                                           maxBondDim=16)
    return bops.permute(top, [0, 1, 4, 2, 3]), bottom
예제 #18
0
def estimateOp(xRight, xLeft, upRow, downRow, A, ops):
    N = len(ops)
    curr = xLeft
    for i in range(int(N / 2)):
        closedA = tn.Node(
            np.trace(bops.multiContraction(ops[i * 2], A, '1', '0').tensor,
                     axis1=0,
                     axis2=5))
        closedB = tn.Node(
            np.trace(bops.multiContraction(ops[i * 2 + 1], A, '1', '0').tensor,
                     axis1=0,
                     axis2=5))
        closed = bops.permute(
            bops.multiContraction(closedA, closedB, '1', '3'),
            [0, 3, 2, 4, 1, 5])
        curr = bops.multiContraction(bops.multiContraction(
            bops.multiContraction(curr, upRow, '0', '0'),
            closed,
            '023',
            '201',
            cleanOr1=True),
                                     downRow,
                                     '034',
                                     '012',
                                     cleanOr1=True)
    return bops.multiContraction(curr, xRight, '012', '012').tensor
예제 #19
0
파일: PEPS.py 프로젝트: NoaFeldman/DMRG_py
def bmpsSides(cUp: tn.Node,
              dUp: tn.Node,
              cDown: tn.Node,
              dDown: tn.Node,
              AEnv: tn.Node,
              BEnv: tn.Node,
              steps,
              option='right'):
    envOpAB = bops.permute(bops.multiContraction(AEnv, BEnv, '1', '3'),
                           [0, 3, 2, 4, 1, 5])
    upRow = bops.multiContraction(cUp, dUp, '2', '0')
    downRow = bops.multiContraction(cDown, dDown, '2', '0')
    if option == 'right':
        X = tn.Node(
            np.ones((upRow[3].dimension, envOpAB[3].dimension,
                     downRow[3].dimension),
                    dtype=complex))
    else:
        X = tn.Node(
            np.ones((upRow[0].dimension, envOpAB[2].dimension,
                     downRow[0].dimension),
                    dtype=complex))
    for i in range(steps):
        if option == 'right':
            X = bops.multiContraction(
                bops.multiContraction(bops.multiContraction(
                    X, upRow, '0', '3'),
                                      envOpAB,
                                      '340',
                                      '013',
                                      cleanOr1=True), downRow, '034', '312')
        else:
            X = bops.multiContraction(bops.multiContraction(
                bops.multiContraction(X, upRow, '0', '0'),
                envOpAB,
                '023',
                '201',
                cleanOr1=True),
                                      downRow,
                                      '034',
                                      '012',
                                      cleanOr1=True)
        norm = np.sqrt(bops.multiContraction(X, X, '012', '012*').tensor)
        X = bops.multNode(X, 1 / norm)
    return X
예제 #20
0
def exactPurity(l, xRight, xLeft, upRow, downRow, A, filename, d=2):
    curr = xLeft
    pair = bops.permute(bops.multiContraction(A, A, '2', '4'),
                        [1, 6, 3, 7, 2, 8, 0, 5, 4, 9])
    for i in range(int(l / 2)):
        curr = bops.multiContraction(
            bops.multiContraction(curr, upRow, '0', '0'), downRow, '1', '0')
        curr = bops.multiContraction(
            curr, pair, [0, i * 4 + 1, i * 4 + 2, i * 4 + 4, i * 4 + 5],
            '20145')
        curr = bops.permute(curr, [i * 4, i * 4 + 2, i * 4 + 1] +
                            list(range(i * 2)) + [i * 4 + 3, i * 4 + 4] +
                            list(range(i * 2, i * 4)) + [i * 4 + 5, i * 4 + 6])
    dm = bops.multiContraction(curr, xRight, '012', '012')
    ordered = np.reshape(dm.tensor, [d**l, d**l]) / np.trace(
        np.reshape(dm.tensor, [d**l, d**l]))
    purity = sum(np.linalg.eigvalsh(np.matmul(ordered, ordered)))
    with open(filename + '_l_' + str(l), 'wb') as f:
        pickle.dump(purity, f)
    return purity
예제 #21
0
def get2ByNExplicit(l: int):
    with open('results/toricBoundaries', 'rb') as f:
        [upRow, downRow, leftRow, rightRow, openA, openB, A,
         B] = pickle.load(f)
    left = bops.multiContraction(
        downRow, bops.multiContraction(leftRow, upRow, '3', '0'), '3', '0')
    for i in range(1, l):
        left = bops.multiContraction(
            downRow,
            bops.multiContraction(left, upRow, [3 + 4 * i], '0',
                                  cleanOr1=True), '3', '0')
    circle = bops.multiContraction(left, downRow, [3 + 4 * l, 0], '03')
    openA = tn.Node(
        np.transpose(
            np.reshape(np.kron(A.tensor, A.tensor),
                       [d**2, d**2, d**2, d**2, d, d]), [4, 0, 1, 2, 3, 5]))
    openB = tn.Node(
        np.transpose(
            np.reshape(np.kron(B.tensor, B.tensor),
                       [d**2, d**2, d**2, d**2, d, d]), [4, 0, 1, 2, 3, 5]))
    ABNet = bops.permute(
        bops.multiContraction(bops.multiContraction(openB, openA, '2', '4'),
                              bops.multiContraction(openA, openB, '2', '4'),
                              '28',
                              '16',
                              cleanOr1=True,
                              cleanOr2=True),
        [1, 5, 6, 13, 14, 9, 10, 2, 0, 4, 8, 12, 3, 7, 11, 15])
    if l == 2:
        curr = bops.multiContraction(circle, ABNet, '234567', '456701')
        res = bops.permute(
            bops.multiContraction(curr, ABNet, '23450176', '01234567'),
            [0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15])
        rdm = np.reshape(res.tensor, [2**8, 2**8])
        rdm = rdm / np.trace(rdm)
    return rdm
예제 #22
0
def makeMeasurement(psi, site, toProject):
    localDM = bops.multiContraction(psi[site], psi[site], '02', '02*').tensor
    projectionProbability = np.trace(np.matmul(localDM,
                                               toProject)) / np.trace(localDM)
    # Project to the measured vector
    if np.random.uniform(0, 1) < projectionProbability:
        psi[site] = bops.permute(
            bops.multiContraction(psi[site],
                                  tn.Node(toProject),
                                  '1',
                                  '1',
                                  cleanOr1=True,
                                  cleanOr2=True), [0, 2, 1])
        res = 1
    else:
        psi[site] = bops.permute(
            bops.multiContraction(psi[site],
                                  tn.Node(np.eye(d) - toProject),
                                  '1',
                                  '1',
                                  cleanOr1=True,
                                  cleanOr2=True), [0, 2, 1])
        res = 0
    return res
예제 #23
0
def applySwap(psi, psiP, startInd, endInd):
    psiDagger = bops.copyState(psi, conj=True)
    psiPDagger = bops.copyState(psi, conj=True)
    curr = bops.multiContraction(psi[startInd], psiDagger[startInd], [0], [0])
    currP = bops.multiContraction(psiP[startInd], psiPDagger[startInd], [0], [0])
    curr = bops.multiContraction(curr, currP, [2, 0], [0, 2])
    for i in range(startInd + 1, endInd + 1):
        curr = bops.multiContraction(curr, psi[i], [0], [0])
        curr = bops.multiContraction(curr, psiDagger[i], [0], [0])
        curr = bops.multiContraction(curr, psiP[i], [0, 4], [0, 1])
        curr = bops.multiContraction(curr, psiPDagger[i], [0, 1], [0, 1])
    bops.removeState(psiPDagger)
    bops.removeState(psiPDagger)
    return curr
예제 #24
0
def applyO(psi, psiP, startInd, endInd):
    psiDagger = bops.copyState(psi, conj=True)
    psiPDagger = bops.copyState(psi, conj=True)
    OTensor = np.zeros((9, 9), dtype=complex)
    for i in range(3):
        for j in range(3):
            OTensor[i * 3 + i, j * 3 + j] = 1
    OTensor = np.reshape(OTensor, [3, 3, 3, 3])
    O = tn.Node(OTensor, name='O', backend=None)
    curr = bops.multiContraction(psi[endInd], psiDagger[endInd], [2], [2])
    currP = bops.multiContraction(psiP[endInd], psiPDagger[endInd], [2], [2])
    curr = bops.multiContraction(curr, O, [1, 3], [1, 3])
    curr = bops.multiContraction(curr, currP, [2, 3], [1, 3])
    for i in [endInd - j for j in range(1, endInd - startInd + 1)]:
        O = tn.Node(OTensor, name='O', backend=None)
        curr = bops.multiContraction(curr, psi[i], [0], [2])
        curr = bops.multiContraction(curr, psiDagger[i], [0], [2])
        curr = bops.multiContraction(curr, O, [3, 5], [1, 3])
        curr = bops.multiContraction(curr, psiP[i], [0, 4], [2, 1])
        curr = bops.multiContraction(curr, psiPDagger[i], [0, 3], [2, 1])
    bops.removeState(psiPDagger)
    bops.removeState(psiPDagger)
    return curr
예제 #25
0
def localVecsEstimate(psi: List[tn.Node],
                      vs: List[List[np.array]],
                      half='left'):
    vs = np.round(vs, 10)
    n = len(vs)
    result = 1
    for copy in range(n):
        if half == 'left':
            NA = len(vs[0])
            curr = bops.multiContraction(psi[NA], psi[NA], '12', '12*')
            sites = range(NA - 1, -1, -1)
        elif half == 'right':
            NA = len(psi) - len(vs[0])
            curr = bops.multiContraction(psi[len(psi) - NA - 1],
                                         psi[len(psi) - NA - 1], '01', '01*')
            sites = range(NA, len(psi))
        psiCopy = bops.copyState(psi)
        for alpha in sites:
            toEstimate = np.outer(vs[copy][alpha - NA],
                                  np.conj(vs[np.mod(copy + 1, n)][alpha - NA]))
            psiCopy[alpha] = bops.permute(bops.multiContraction(psiCopy[alpha], tn.Node(toEstimate), \
                                                   '1', '1'), [0, 2, 1])
            if half == 'left':
                curr = bops.multiContraction(bops.multiContraction(
                    psiCopy[alpha], curr, '2', '0', cleanOr2=True),
                                             psi[alpha],
                                             '12',
                                             '12*',
                                             cleanOr1=True)
            elif half == 'right':
                curr = bops.multiContraction(bops.multiContraction(
                    curr, psiCopy[alpha], '0', '0', cleanOr2=True),
                                             psi[alpha],
                                             '01',
                                             '01*',
                                             cleanOr1=True)
            # psiCopy = bops.shiftWorkingSite(psiCopy, alpha, '<<')
        result *= np.trace(curr.tensor)
        tn.remove_node(curr)
        bops.removeState(psiCopy)
    return result
예제 #26
0
def singleHaarEstimation(psi: List[tn.Node], us: List[tn.Node], n: int,
                         NA: int):
    psiCopy = bops.copyState(psi)
    projector0 = np.zeros((2, 2))
    projector0[0, 0] = 1
    projector1 = np.zeros((2, 2))
    projector1[1, 1] = 1
    measurementResults = np.array(NA)
    estimation = 1
    for i in range(NA):
        psiCopy[i] = bops.permute(
            bops.multiContraction(psiCopy[i], us[i], '1', '1', cleanOr1=True),
            [0, 2, 1])
        measurementResults[i] = makeMeasurement(psiCopy, i, projector0)
        if measurementResults:
            resultProjector = projector0
        else:
            resultProjector = projector1
        localEstimation = np.matmul(np.matmul(np.conj(np.transpose(us[i].tensor)), resultProjector), us[i].tensor) \
            - np.eye(2)
        estimation *= np.trace(localEstimation**4)
        psiCopy = bops.shiftWorkingSite(psiCopy, i, '<<')
    return estimation
예제 #27
0
파일: trotter.py 프로젝트: ZENG-Hui/DMRG_py
def trotterSweep(trotterGates, psi, startSite, endSite, maxBondDim=1024):
    psiCopy = bops.copyState(psi)
    truncErr = 0
    N = len(psi)
    for k in [endSite - i for i in range(startSite, endSite)]:
        M = bops.multiContraction(psiCopy[k - 1], psiCopy[k], [2], [0])
        M = bops.permute(
            bops.multiContraction(M, trotterGates[k - 1], [1, 2], [0, 1]),
            [0, 2, 3, 1])
        [l, r, currTruncErr] = bops.svdTruncation(M,
                                                  M[:2],
                                                  M[2:],
                                                  '<<',
                                                  maxBondDim,
                                                  leftName='site' + str(k - 1),
                                                  rightName='site' + str(k),
                                                  edgeName='v' + str(k))
        if currTruncErr > truncErr:
            truncErr = currTruncErr
        psiCopy[k] = r
        psiCopy[k - 1] = l
        bops.multiContraction(r, r, [1, 2], [1, 2, '*'])
    for k in range(startSite, endSite):
        M = bops.multiContraction(psiCopy[k], psiCopy[k + 1], [2], [0])
        M = bops.permute(
            bops.multiContraction(M, trotterGates[k], [1, 2], [0, 1]),
            [0, 2, 3, 1])
        [l, r,
         currTruncErr] = bops.svdTruncation(M,
                                            M[:2],
                                            M[2:],
                                            '>>',
                                            maxBondDim,
                                            leftName='site' + str(k),
                                            rightName='site' + str(k + 1),
                                            edgeName='v' + str(k + 1))
        if currTruncErr > truncErr:
            truncErr = currTruncErr
        psiCopy[k] = l
        psiCopy[k + 1] = r
    # For imaginary time propagation, renormalize state.
    norm = bops.getOverlap(psiCopy, psiCopy)
    psiCopy[N - 1].tensor = psiCopy[N - 1].tensor / math.sqrt(abs(norm))
    return psiCopy, truncErr
예제 #28
0
def randomMeasurement(psi, startInd, endInd):
    d = psi[0].tensor.shape[1]
    res = [-1] * (endInd - startInd)
    psiCopy = bops.copyState(psi)
    for k in [len(psiCopy) - 1 - i for i in range(len(psiCopy) - startInd - 1)]:
        psiCopy = bops.shiftWorkingSite(psiCopy, k, '<<')
    for i in range(startInd, endInd):
        rho = bops.multiContraction(psiCopy[i], psiCopy[i], '02', '02*')
        measurement = np.random.uniform(low=0, high=1)
        covered = 0
        for s in range(len(rho.tensor)):
            if covered < measurement < covered + rho.tensor[s, s]:
                res[i - startInd] = s
                break
            covered += rho.tensor[s, s]
        projectorTensor = np.zeros((d, d), dtype=complex)
        projectorTensor[res[i - startInd], res[i - startInd]] = 1
        projector = tn.Node(projectorTensor, backend=None)
        bops.applySingleSiteOp(psiCopy, projector, i)
        psiCopy = bops.shiftWorkingSite(psiCopy, i, '>>')
        psiCopy[i + 1].tensor /= np.sqrt(bops.getOverlap(psiCopy, psiCopy))
        tn.remove_node(rho)
    bops.removeState(psiCopy)
    return res
예제 #29
0
def getExplicit2by2(g=0):
    if g == 0:
        with open('results/toricBoundaries', 'rb') as f:
            [upRow, downRow, leftRow, rightRow, openA, openB, A,
             B] = pickle.load(f)
    else:
        with open('results/toricBoundaries_g_' + str(g), 'rb') as f:
            [upRow, downRow, leftRow, rightRow, openA, openB, A,
             B] = pickle.load(f)
    circle = bops.multiContraction(
        bops.multiContraction(bops.multiContraction(upRow, rightRow, '3', '0'),
                              downRow, '5', '0'), leftRow, '70', '03')
    ABNet = bops.permute(
        bops.multiContraction(bops.multiContraction(openB, openA, '2', '4'),
                              bops.multiContraction(openA, openB, '2', '4'),
                              '28',
                              '16',
                              cleanOr1=True,
                              cleanOr2=True),
        [1, 5, 6, 13, 14, 9, 10, 2, 0, 4, 8, 12, 3, 7, 11, 15])
    dm = bops.multiContraction(circle, ABNet, '01234567', '01234567')
    ordered = np.round(np.reshape(dm.tensor, [16, 16]), 14)
    ordered /= np.trace(ordered)
    return ordered
예제 #30
0
파일: ising.py 프로젝트: ZENG-Hui/DMRG_py
d = 2

baseTensor = np.zeros((d, d, d), dtype=complex)
for i in range(d):
    baseTensor[i, 0, i] = 1  #np.sqrt(np.cosh(beta))
for i in range(d):
    baseTensor[i, 1, i] = 0.5 * (
        1 - 2 * i)  #np.sqrt(np.sinh(beta)) * (1 - 2 * i) # sigma_z

base = tn.Node(baseTensor)

A = bops.multiContraction(bops.multiContraction(bops.multiContraction(
    base, base, '2', '0'),
                                                base,
                                                '3',
                                                '0',
                                                cleanOr1=True),
                          base,
                          '4',
                          '0',
                          cleanOr1=True)
AEnv = tn.Node(np.trace(A.get_tensor(), axis1=0, axis2=5))

GammaATensor = np.zeros((d, d, d), dtype=complex)
GammaATensor[1, 1, 1] = 1
GammaATensor[0, 0, 0] = 1
GammaBTensor = np.zeros((d, d, d), dtype=complex)
GammaBTensor[1, 1, 1] = 1
GammaBTensor[1, 1, 0] = -1
GammaBTensor[0, 0, 1] = 1
GammaBTensor[0, 0, 0] = 1
LambdaTensor = np.ones(d, dtype=complex)