예제 #1
0
def compute_critical_values(P, Q, p, q, mdist, P_dist, Q_dist):
    """
    Usage
    -----
    Compute all the critical values between trajectories P and Q

    Parameters
    ----------
    param P : px2 numpy_array, Trajectory P
    param Q : qx2 numpy_array, Trajectory Q
    param p : int, number of points in Trajectory P
    param q : int, number of points in Trajectory Q
    mdist : p x q numpy array, pairwise distance between points of trajectories t1 and t2
    param P_dist:  p x 1 numpy_array,  distances between consecutive points in P
    param Q_dist:  q x 1 numpy_array,  distances between consecutive points in Q

    Returns
    -------
    cc : list, all critical values between trajectories P and Q
    """
    origin = eucl_dist(P[0], Q[0])
    end = eucl_dist(P[-1], Q[-1])
    end_point = max(origin, end)
    cc = set([end_point])
    for i in range(p - 1):
        for j in range(q - 1):
            Lij = point_to_seg(Q[j], P[i], P[i + 1], mdist[i, j],
                               mdist[i + 1, j], P_dist[i])
            if Lij > end_point:
                cc.add(Lij)
            Bij = point_to_seg(P[i], Q[j], Q[j + 1], mdist[i, j],
                               mdist[i, j + 1], Q_dist[j])
            if Bij > end_point:
                cc.add(Bij)
    return sorted(list(cc))
예제 #2
0
def compute_critical_values(P, Q, p, q):
    """
    Usage
    -----
    Compute all the critical values between trajectories P and Q

    Parameters
    ----------
    param P : px2 numpy_array, Trajectory P
    param Q : qx2 numpy_array, Trajectory Q
    param p : float, number of points in Trajectory P
    param q : float, number of points in Trajectory Q

    Returns
    -------
    cc : list, all critical values between trajectories P and Q
    """
    origin = eucl_dist(P[0], Q[0])
    end = eucl_dist(P[-1], Q[-1])
    end_point = max(origin, end)
    cc = set([end_point])
    for i in range(p - 1):
        for j in range(q - 1):
            Lij = point_to_seg(Q[j], P[i], P[i + 1])
            if Lij > end_point:
                cc.add(Lij)
            Bij = point_to_seg(P[i], Q[j], Q[j + 1])
            if Bij > end_point:
                cc.add(Bij)
    return sorted(list(cc))
예제 #3
0
def compute_critical_values(P, Q, p, q):
    """
    Usage
    -----
    Compute all the critical values between trajectories P and Q

    Parameters
    ----------
    param P : px2 numpy_array, Trajectory P
    param Q : qx2 numpy_array, Trajectory Q
    param p : float, number of points in Trajectory P
    param q : float, number of points in Trajectory Q

    Returns
    -------
    cc : list, all critical values between trajectories P and Q
    """
    origin = eucl_dist(P[0], Q[0])
    end = eucl_dist(P[-1], Q[-1])
    end_point = max(origin, end)
    cc = set([end_point])
    for i in range(p - 1):
        for j in range(q - 1):
            Lij = point_to_seg(Q[j], P[i], P[i + 1])
            if Lij > end_point:
                cc.add(Lij)
            Bij = point_to_seg(P[i], Q[j], Q[j + 1])
            if Bij > end_point:
                cc.add(Bij)
    return sorted(list(cc))
예제 #4
0
def frechet(P, Q):
    """
    Usage
    -----
    Compute the frechet distance between trajectories P and Q

    Parameters
    ----------
    param P : px2 numpy_array, Trajectory P
    param Q : qx2 numpy_array, Trajectory Q

    Returns
    -------
    frech : float, the frechet distance between trajectories P and Q
    """
    p = len(P)
    q = len(Q)

    mdist = eucl_dist_traj(P, Q)
    P_dist = map(lambda ip: eucl_dist(P[ip], P[ip + 1]), range(p - 1))
    Q_dist = map(lambda iq: eucl_dist(Q[iq], Q[iq + 1]), range(q - 1))

    cc = compute_critical_values(P, Q, p, q, mdist, P_dist, Q_dist)
    eps = cc[0]
    while (len(cc) != 1):
        m_i = len(cc) / 2 - 1
        eps = cc[m_i]
        rep = decision_problem(P, Q, p, q, eps, mdist, P_dist, Q_dist)
        if rep:
            cc = cc[:m_i + 1]
        else:
            cc = cc[m_i + 1:]
    frech = eps
    return frech
예제 #5
0
def e_sspd(t1, t2):
    """
    Usage
    -----
    The sspd-distance between trajectories t1 and t2.
    The sspd-distance isjthe mean of the spd-distance between of t1 from t2 and the spd-distance of t2 from t1.

    Parameters
    ----------
    param t1 :  len(t1)x2 numpy_array
    param t2 :  len(t2)x2 numpy_array

    Returns
    -------
    sspd : float
            sspd-distance of trajectory t2 from trajectory t1
    """
    mdist = eucl_dist_traj(t1, t2)
    l_t1 = len(t1)
    l_t2 = len(t2)
    t1_dist = map(lambda it1: eucl_dist(t1[it1], t1[it1 + 1]), range(l_t1 - 1))
    t2_dist = map(lambda it2: eucl_dist(t2[it2], t2[it2 + 1]), range(l_t2 - 1))

    sspd = (e_spd(t1, t2, mdist, l_t1, l_t2, t2_dist) + e_spd(t2, t1, mdist.T, l_t2, l_t1, t1_dist)) / 2
    return sspd
예제 #6
0
def e_erp(t0,t1,g):
    """
    Usage
    -----
    The Edit distance with Real Penalty between trajectory t0 and t1.

    Parameters
    ----------
    param t0 : len(t0)x2 numpy_array
    param t1 : len(t1)x2 numpy_array

    Returns
    -------
    dtw : float
          The Dynamic-Time Warping distance between trajectory t0 and t1
    """

    n0 = len(t0)
    n1 = len(t1)
    C=np.zeros((n0+1,n1+1))

    C[1:,0]=sum(map(lambda x : abs(eucl_dist(g,x)),t0))
    C[0,1:]=sum(map(lambda y : abs(eucl_dist(g,y)),t1))
    for i in np.arange(n0)+1:
        for j in np.arange(n1)+1:
            derp0 = C[i-1,j] + eucl_dist(t0[i-1],g)
            derp1 = C[i,j-1] + eucl_dist(g,t1[j-1])
            derp01 = C[i-1,j-1] + eucl_dist(t0[i-1],t1[j-1])
            C[i,j] = min(derp0,derp1,derp01)
    erp = C[n0,n1]
    return erp
예제 #7
0
def e_erp(t0, t1, g):
    """
    Usage
    -----
    The Edit distance with Real Penalty between trajectory t0 and t1.

    Parameters
    ----------
    param t0 : len(t0)x2 numpy_array
    param t1 : len(t1)x2 numpy_array

    Returns
    -------
    dtw : float
          The Dynamic-Time Warping distance between trajectory t0 and t1
    """

    n0 = len(t0)
    n1 = len(t1)
    C = np.zeros((n0 + 1, n1 + 1))

    gt0_dist = map(lambda x: abs(eucl_dist(g, x)), t0)
    gt1_dist = map(lambda x: abs(eucl_dist(g, x)), t1)
    mdist = eucl_dist_traj(t0, t1)

    C[1:, 0] = sum(gt0_dist)
    C[0, 1:] = sum(gt1_dist)
    for i in np.arange(n0) + 1:
        for j in np.arange(n1) + 1:
            derp0 = C[i - 1, j] + gt0_dist[i - 1]
            derp1 = C[i, j - 1] + gt1_dist[j - 1]
            derp01 = C[i - 1, j - 1] + mdist[i - 1, j - 1]
            C[i, j] = min(derp0, derp1, derp01)
    erp = C[n0, n1]
    return erp
def _c(ca,i,j,P,Q):
    if ca[i,j] > -1:
        return ca[i,j]
    elif i == 0 and j == 0:
        ca[i,j] = eucl_dist(P[0],Q[0])
    elif i > 0 and j == 0:
        ca[i,j] = max(_c(ca,i-1,0,P,Q),eucl_dist(P[i],Q[0]))
    elif i == 0 and j > 0:
        ca[i,j] = max(_c(ca,0,j-1,P,Q),eucl_dist(P[0],Q[j]))
    elif i > 0 and j > 0:
        ca[i,j] = max(min(_c(ca,i-1,j,P,Q),_c(ca,i-1,j-1,P,Q),_c(ca,i,j-1,P,Q)),eucl_dist(P[i],Q[j]))
    else:
        ca[i,j] = float("inf")
    return ca[i,j]
예제 #9
0
def e_dtw(t0,t1):
    """
    Usage
    -----
    The Dynamic-Time Warping distance between trajectory t0 and t1.

    Parameters
    ----------
    param t0 : len(t0)x2 numpy_array
    param t1 : len(t1)x2 numpy_array

    Returns
    -------
    dtw : float
          The Dynamic-Time Warping distance between trajectory t0 and t1
    """

    n0 = len(t0)
    n1 = len(t1)
    C=np.zeros((n0+1,n1+1))
    C[1:,0]=float('inf')
    C[0,1:]=float('inf')
    for i in np.arange(n0)+1:
        for j in np.arange(n1)+1:
            C[i,j]=eucl_dist(t0[i-1],t1[j-1]) + min(C[i,j-1],C[i-1,j-1],C[i-1,j])
    dtw = C[n0,n1]
    return dtw
예제 #10
0
def discret_frechet(t0, t1):
    """
    Usage
    -----
    Compute the discret frechet distance between trajectories P and Q

    Parameters
    ----------
    param t0 : px2 numpy_array, Trajectory t0
    param t1 : qx2 numpy_array, Trajectory t1

    Returns
    -------
    frech : float, the discret frechet distance between trajectories t0 and t1
    """
    n0 = len(t0)
    n1 = len(t1)
    C = np.zeros((n0 + 1, n1 + 1))
    C[1:, 0] = float('inf')
    C[0, 1:] = float('inf')
    for i in np.arange(n0) + 1:
        for j in np.arange(n1) + 1:
            C[i, j] = max(eucl_dist(t0[i - 1], t1[j - 1]), min(C[i, j - 1], C[i - 1, j - 1], C[i - 1, j]))
    dtw = C[n0, n1]
    return dtw
예제 #11
0
def e_lcss(t0, t1,eps):
    """
    Usage
    -----
    The Longuest-Common-Subsequence distance between trajectory t0 and t1.

    Parameters
    ----------
    param t0 : len(t0)x2 numpy_array
    param t1 : len(t1)x2 numpy_array
    eps : float

    Returns
    -------
    lcss : float
           The Longuest-Common-Subsequence distance between trajectory t0 and t1
    """
    n0 = len(t0)
    n1 = len(t1)
    # An (m+1) times (n+1) matrix
    C = [[0] * (n1+1) for _ in range(n0+1)]
    for i in range(1, n0+1):
        for j in range(1, n1+1):
            if eucl_dist(t0[i-1],t1[j-1])<eps:
                C[i][j] = C[i-1][j-1] + 1
            else:
                C[i][j] = max(C[i][j-1], C[i-1][j])
    lcss = 1-float(C[n0][n1])/min([n0,n1])
    return lcss
예제 #12
0
def _c(ca, i, j, P, Q):
    if ca[i, j] > -1:
        return ca[i, j]
    elif i == 0 and j == 0:
        ca[i, j] = eucl_dist(P[0], Q[0])
    elif i > 0 and j == 0:
        ca[i, j] = max(_c(ca, i - 1, 0, P, Q), eucl_dist(P[i], Q[0]))
    elif i == 0 and j > 0:
        ca[i, j] = max(_c(ca, 0, j - 1, P, Q), eucl_dist(P[0], Q[j]))
    elif i > 0 and j > 0:
        ca[i, j] = max(
            min(_c(ca, i - 1, j, P, Q), _c(ca, i - 1, j - 1, P, Q),
                _c(ca, i, j - 1, P, Q)), eucl_dist(P[i], Q[j]))
    else:
        ca[i, j] = float("inf")
    return ca[i, j]
예제 #13
0
def e_dtw(t0, t1):
    """
    Usage
    -----
    The Dynamic-Time Warping distance between trajectory t0 and t1.

    Parameters
    ----------
    param t0 : len(t0)x2 numpy_array
    param t1 : len(t1)x2 numpy_array

    Returns
    -------
    dtw : float
          The Dynamic-Time Warping distance between trajectory t0 and t1
    """

    n0 = len(t0)
    n1 = len(t1)
    C = np.zeros((n0 + 1, n1 + 1))
    C[1:, 0] = float('inf')
    C[0, 1:] = float('inf')
    for i in np.arange(n0) + 1:
        for j in np.arange(n1) + 1:
            C[i, j] = eucl_dist(t0[i - 1], t1[j - 1]) + min(
                C[i, j - 1], C[i - 1, j - 1], C[i - 1, j])
    dtw = C[n0, n1]
    return dtw
예제 #14
0
def e_lcss(t0, t1, eps):
    """
    Usage
    -----
    The Longuest-Common-Subsequence distance between trajectory t0 and t1.

    Parameters
    ----------
    param t0 : len(t0)x2 numpy_array
    param t1 : len(t1)x2 numpy_array
    eps : float

    Returns
    -------
    lcss : float
           The Longuest-Common-Subsequence distance between trajectory t0 and t1
    """
    n0 = len(t0)
    n1 = len(t1)
    # An (m+1) times (n+1) matrix
    C = [[0] * (n1 + 1) for _ in range(n0 + 1)]
    for i in range(1, n0 + 1):
        for j in range(1, n1 + 1):
            if eucl_dist(t0[i - 1], t1[j - 1]) < eps:
                C[i][j] = C[i - 1][j - 1] + 1
            else:
                C[i][j] = max(C[i][j - 1], C[i - 1][j])
    lcss = 1 - float(C[n0][n1]) / min([n0, n1])
    return lcss
예제 #15
0
def e_edr(t0, t1, eps):
    """
    Usage
    -----
    The Edit Distance on Real sequence between trajectory t0 and t1.

    Parameters
    ----------
    param t0 : len(t0)x2 numpy_array
    param t1 : len(t1)x2 numpy_array
    eps : float

    Returns
    -------
    edr : float
           The Longuest-Common-Subsequence distance between trajectory t0 and t1
    """
    n0 = len(t0)
    n1 = len(t1)
    # An (m+1) times (n+1) matrix
    C = [[0] * (n1 + 1) for _ in range(n0 + 1)]
    for i in range(1, n0 + 1):
        for j in range(1, n1 + 1):
            if eucl_dist(t0[i - 1], t1[j - 1]) < eps:
                subcost = 0
            else:
                subcost = 1
            C[i][j] = min(C[i][j - 1] + 1, C[i - 1][j] + 1, C[i - 1][j - 1] + subcost)
    edr = float(C[n0][n1]) / max([n0, n1])
    return edr
예제 #16
0
def e_edr(t0, t1,eps):
    """
    Usage
    -----
    The Edit Distance on Real sequence between trajectory t0 and t1.

    Parameters
    ----------
    param t0 : len(t0)x2 numpy_array
    param t1 : len(t1)x2 numpy_array
    eps : float

    Returns
    -------
    edr : float
           The Longuest-Common-Subsequence distance between trajectory t0 and t1
    """
    n0 = len(t0)
    n1 = len(t1)
    # An (m+1) times (n+1) matrix
    C = [[0] * (n1+1) for _ in range(n0+1)]
    for i in range(1, n0+1):
        for j in range(1, n1+1):
            if eucl_dist(t0[i-1],t1[j-1])<eps:
                subcost = 0
            else:
                subcost = 1
            C[i][j] = min(C[i][j-1]+1, C[i-1][j]+1,C[i-1][j-1]+subcost)
    edr = float(C[n0][n1])/max([n0,n1])
    return edr
예제 #17
0
def e_hausdorff(t1, t2):
    """
    Usage
    -----
    hausdorff distance between trajectories t1 and t2.

    Parameters
    ----------
    param t1 :  len(t1)x2 numpy_array
    param t2 :  len(t2)x2 numpy_array

    Returns
    -------
    h : float, hausdorff from trajectories t1 and t2
    """
    mdist = eucl_dist_traj(t1, t2)
    l_t1 = len(t1)
    l_t2 = len(t2)
    t1_dist = map(lambda it1: eucl_dist(t1[it1], t1[it1 + 1]), range(l_t1 - 1))
    t2_dist = map(lambda it2: eucl_dist(t2[it2], t2[it2 + 1]), range(l_t2 - 1))

    h = max(e_directed_hausdorff(t1, t2, mdist, l_t1, l_t2, t2_dist),
            e_directed_hausdorff(t2, t1, mdist.T, l_t2, l_t1, t1_dist))
    return h
def ordered_mixed_distance(si,ei,sj,ej,siei,sjej,siei_norm_2,sjej_norm_2):

    siei_norm=math.sqrt(siei_norm_2)
    sjej_norm=math.sqrt(sjej_norm_2)
    sisj=sj-si
    siej=ej-si

    u1=(sisj[0]*siei[0]+sisj[1]*siei[1])/siei_norm_2
    u2=(siej[0]*siei[0]+siej[1]*siei[1])/siei_norm_2

    ps=si+u1*siei
    pe=si+u2*siei

    cos_theta = max(-1,min(1,(sjej[0]*siei[0]+sjej[1]*siei[1])/(siei_norm*sjej_norm)))
    theta = math.acos(cos_theta)

    #perpendicular distance
    lpe1=eucl_dist(sj,ps)
    lpe2=eucl_dist(ej,pe)
    if lpe1==0 and lpe2==0:
        dped= 0
    else:
        dped = (lpe1*lpe1+lpe2*lpe2)/(lpe1+lpe2)

    #parallel_distance
    lpa1=min(eucl_dist(si,ps),eucl_dist(ei,ps))
    lpa2=min(eucl_dist(si,pe),eucl_dist(ei,pe))
    dpad=min(lpa1,lpa2)

    #angle_distance
    if 0 <= theta <HPI :
        dad=sjej_norm * math.sin(theta)
    elif HPI <= theta <= PI:
        dad=sjej_norm
    else:
        raise ValueError("WRONG THETA")

    fdist = (dped+dpad+dad)/3

    return fdist
예제 #19
0
def ordered_mixed_distance(si, ei, sj, ej, siei, sjej, siei_norm_2, sjej_norm_2):
    siei_norm = math.sqrt(siei_norm_2)
    sjej_norm = math.sqrt(sjej_norm_2)
    sisj = sj - si
    siej = ej - si

    u1 = (sisj[0] * siei[0] + sisj[1] * siei[1]) / siei_norm_2
    u2 = (siej[0] * siei[0] + siej[1] * siei[1]) / siei_norm_2

    ps = si + u1 * siei
    pe = si + u2 * siei

    cos_theta = max(-1, min(1, (sjej[0] * siei[0] + sjej[1] * siei[1]) / (siei_norm * sjej_norm)))
    theta = math.acos(cos_theta)

    # perpendicular distance
    lpe1 = eucl_dist(sj, ps)
    lpe2 = eucl_dist(ej, pe)
    if lpe1 == 0 and lpe2 == 0:
        dped = 0
    else:
        dped = (lpe1 * lpe1 + lpe2 * lpe2) / (lpe1 + lpe2)

    # parallel_distance
    lpa1 = min(eucl_dist(si, ps), eucl_dist(ei, ps))
    lpa2 = min(eucl_dist(si, pe), eucl_dist(ei, pe))
    dpad = min(lpa1, lpa2)

    # angle_distance
    if 0 <= theta < HPI:
        dad = sjej_norm * math.sin(theta)
    elif HPI <= theta <= PI:
        dad = sjej_norm
    else:
        raise ValueError("WRONG THETA")

    fdist = (dped + dpad + dad) / 3

    return fdist
예제 #20
0
def free_line(p, eps, s):
    """
    Usage
    -----
    Return the free space in the segment s, from point p.
    This free space is the set of all point in s whose distance from p is at most eps.
    Since s is a segment, the free space is also a segment.
    We return a 1x2 array whit the fraction of the segment s which are in the free space.
    If no part of s are in the free space, return [-1,-1]

    Parameters
    ----------
    param p : 1x2 numpy_array, centre of the circle
    param eps : float, radius of the circle
    param s : 2x2 numpy_array, line

    Returns
    -------
    lf : 1x2 numpy_array
         fraction of segment which is in the free space (i.e [0.3,0.7], [0.45,1], ...)
         If no part of s are in the free space, return [-1,-1]
    """
    px = p[0]
    py = p[1]
    s1x = s[0, 0]
    s1y = s[0, 1]
    s2x = s[1, 0]
    s2y = s[1, 1]
    if s1x == s2x and s1y==s2y:
        if eucl_dist(p, s[0]) > eps:
            lf = [-1, -1]
        else:
            lf = [0, 1]
    else:
        if point_to_seg(p, s[0], s[1]) > eps:
            #print("No Intersection")
            lf = [-1, -1]
        else:
            segl = eucl_dist(s[0], s[1])
            segl2 = segl * segl
            intersect = circle_line_intersection(px, py, s1x, s1y, s2x, s2y, eps)
            if intersect[0][0] != intersect[1][0] or intersect[0][1] != intersect[1][1]:
                i1x = intersect[0, 0]
                i1y = intersect[0, 1]
                u1 = (((i1x - s1x) * (s2x - s1x)) + ((i1y - s1y) * (s2y - s1y))) / segl2

                i2x = intersect[1, 0]
                i2y = intersect[1, 1]
                u2 = (((i2x - s1x) * (s2x - s1x)) + ((i2y - s1y) * (s2y - s1y))) / segl2
                ordered_point = sorted((0, 1, u1, u2))
                lf = ordered_point[1:3]
            else:
                if px == s1x and py==s1y:
                    lf = [0, 0]
                elif px == s2x and py==s2y:
                     lf = [1, 1]
                else:
                    i1x = intersect[0][0]
                    i1y = intersect[0][1]
                    u1 = (((i1x - s1x) * (s2x - s1x)) + ((i1y - s1y) * (s2y - s1y))) / segl2
                    if 0 <= u1 <= 1:
                        lf = [u1, u1]
                    else:
                        lf = [-1, -1]
    return lf
예제 #21
0
def free_line(p, eps, s, dps1, dps2, ds):
    """
    Usage
    -----
    Return the free space in the segment s, from point p.
    This free space is the set of all point in s whose distance from p is at most eps.
    Since s is a segment, the free space is also a segment.
    We return a 1x2 array whit the fraction of the segment s which are in the free space.
    If no part of s are in the free space, return [-1,-1]

    Parameters
    ----------
    param p : 1x2 numpy_array, centre of the circle
    param eps : float, radius of the circle
    param s : 2x2 numpy_array, line

    Returns
    -------
    lf : 1x2 numpy_array
         fraction of segment which is in the free space (i.e [0.3,0.7], [0.45,1], ...)
         If no part of s are in the free space, return [-1,-1]
    """
    px = p[0]
    py = p[1]
    s1x = s[0, 0]
    s1y = s[0, 1]
    s2x = s[1, 0]
    s2y = s[1, 1]
    if s1x == s2x and s1y == s2y:
        if eucl_dist(p, s[0]) > eps:
            lf = [-1, -1]
        else:
            lf = [0, 1]
    else:
        if point_to_seg(p, s[0], s[1], dps1, dps2, ds) > eps:
            # print("No Intersection")
            lf = [-1, -1]
        else:
            segl = eucl_dist(s[0], s[1])
            segl2 = segl * segl
            intersect = circle_line_intersection(px, py, s1x, s1y, s2x, s2y,
                                                 eps)
            if intersect[0][0] != intersect[1][0] or intersect[0][
                    1] != intersect[1][1]:
                i1x = intersect[0, 0]
                i1y = intersect[0, 1]
                u1 = (((i1x - s1x) * (s2x - s1x)) + ((i1y - s1y) *
                                                     (s2y - s1y))) / segl2

                i2x = intersect[1, 0]
                i2y = intersect[1, 1]
                u2 = (((i2x - s1x) * (s2x - s1x)) + ((i2y - s1y) *
                                                     (s2y - s1y))) / segl2
                ordered_point = sorted((0, 1, u1, u2))
                lf = ordered_point[1:3]
            else:
                if px == s1x and py == s1y:
                    lf = [0, 0]
                elif px == s2x and py == s2y:
                    lf = [1, 1]
                else:
                    i1x = intersect[0][0]
                    i1y = intersect[0][1]
                    u1 = (((i1x - s1x) * (s2x - s1x)) + ((i1y - s1y) *
                                                         (s2y - s1y))) / segl2
                    if 0 <= u1 <= 1:
                        lf = [u1, u1]
                    else:
                        lf = [-1, -1]
    return lf