# image visualization b_visualize = True # graph visualization b_plot = True save = True # weights pesi = '../weights_13_cpm_no_vgg_out_8BIT/weights.041-0.00920.hdf5' # model model = net(input_shape=(1, rows, cols), weights_path=pesi) # loading test names test_data_names = load_names(val_seq=2, augm=0, dataset=2) show = True thresold = 0.3 TP = TN = FP = FN = FP_DIST = 0 FPS = [] TOTiou = [] for image in range(len(test_data_names)): sys.stdout.write("\r%.2f%%" % (((image + 1) / float(len(test_data_names))) * 100)) sys.stdout.flush() seq = test_data_names[image]['image'].split('\\')[-3] frame = 0 if checkBadFrame(seq, frame): print 'skipped', seq, frame continue
#limit_test = 10 limit_test = -1 b_debug = False fulldepth = False removeBackground = False equalize = False WEIGHT = 'weights' model = EyesStatusNet(input_shape=(1, rows, cols)) model.summary() # loading training name train_data_names = load_names() random.shuffle(train_data_names) val_data_names = load_names_val() # Data augmentation if data_augmentation: for i in range(1, 9): tmp = load_names(augm=i) train_data_names = train_data_names + tmp # cut train random.shuffle(train_data_names) if limit_train == -1: limit_train = len(train_data_names) train_data_names = train_data_names[:limit_train] random.shuffle(val_data_names)
# image visualization b_visualize = True # graph visualization b_plot = True save = True # weights pesi = '..\weights\weights.018-0.13829.hdf5' # model model = EyesStatusNet(input_shape=(1, rows, cols), weights_path=pesi) # loading test sequence test_data_names = load_names(val_seq=-1) show = True contAccuracy = 0 for image in range(len(test_data_names)): seq = test_data_names[image]['image'].split('\\')[-3] t = time.time() test_data_X, _ = load_images(test_data_names[image:image + 1], crop=b_crop, rescale=b_rescale, scale=b_scale, b_debug=False, normcv2=b_normcv2, rows=rows, fulldepth=False, cols=cols,
limit_test = 10 #limit_test = -1 b_debug = False fulldepth = False removeBackground = False equalize = False WEIGHT = 'weights' model = net(input_shape=(1, rows, cols)) model.summary() # load train name train_data_names = load_names(dataset=0) train_data_names = train_data_names + load_names(dataset=1) # train_data_names = load_names(dataset=2) random.shuffle(train_data_names) # load validation name val_data_names = load_names_val() # data augmentation if data_augmentation: for i in range(1, 9): tmp = load_names(augm=i) train_data_names = train_data_names + tmp # train data cut random.shuffle(train_data_names) if limit_train == -1: limit_train = len(train_data_names)