def test_log_marg_k(): np.random.seed(1) # Generate data D = 10 N_1 = 10 X_1 = 5 * np.random.rand(N_1, D) - 1 # Prior var = 10 * np.random.rand(D) mu_0 = 5 * np.random.rand(D) - 2 var_0 = 2 * np.random.rand(D) prior = FixedVarPrior(var, mu_0, var_0) precision = 1. / var precision_0 = 1. / var_0 # Setup GMM assignments = np.concatenate([np.zeros(N_1)]) gmm = GaussianComponentsFixedVar(X_1, prior, assignments=assignments) # Calculate marginal for component by hand expected_log_marg = np.sum( np.log([ np.sqrt(var[i]) / (np.sqrt(2 * np.pi * var[i])**N_1 * np.sqrt(N_1 * var_0[i] + var[i])) * np.exp(-0.5 * np.square(X_1).sum(axis=0)[i] / var[i] - mu_0[i]**2 / (2 * var_0[i])) * np.exp( (var_0[i] * N_1**2 * X_1.mean(axis=0)[i]**2 / var[i] + var[i] * mu_0[i]**2 / var_0[i] + 2 * N_1 * X_1.mean(axis=0)[i] * mu_0[i]) / (2. * (N_1 * var_0[i] + var[i]))) for i in range(D) ])) npt.assert_almost_equal(gmm.log_marg_k(0), expected_log_marg)
def test_log_prod_norm(): np.random.seed(1) # Prior D = 10 var = 1 * np.random.rand(D) mu_0 = 5 * np.random.rand(D) - 2 var_0 = 2 * np.random.rand(D) prior = FixedVarPrior(var, mu_0, var_0) # GMM will be used to access `_log_prod_norm` x = 3 * np.random.rand(D) + 4 gmm = GaussianComponentsFixedVar(np.array([x]), prior) expected_prior = np.sum( [log_norm_pdf(x[i], mu_0[i], var_0[i]) for i in range(len(x))]) npt.assert_almost_equal(gmm.log_prior(0), expected_prior)