flarelcinj = bf.Lightcurve() flarelcinj.clc = np.copy(oinj) flarelcinj.cts = np.copy(ts) flarelcinj.cle = np.zeros(len(ts)) flarelcinj.cadence = 'long' flarelc.clc = flarelc.clc + injdata if opts.onoise: noiseest = opts.noisemethod tmpcurve = copy(flarelc) tmpcurve.detrend(opts.bglen, opts.bgorder) if noiseest == 'powerspectrum': sig = bf.estimate_noise_ps(tmpcurve, estfrac=opts.psest)[0] elif noiseest == 'tailveto': sig = bf.estimate_noise_tv(tmpcurve.clc, sigma=opts.tvsigma)[0] else: print "Error... noise estimation method %s not recognised." % noiseest sys.exit(0) detrendedsk, f = tmpcurve.psd() # convert back to one-sided power spectral density sig = 2. * (sig**2) / flarelc.fs() # set matplotlib defaults mplparams = { \ 'text.usetex': True, # use LaTeX for all text 'axes.linewidth': 0.5, # set axes linewidths to 0.5 'axes.grid': True, # add a grid 'grid.linewidth': 0.5,
flarelc.cts = np.copy(ts) flarelc.cle = np.zeros(len(ts)) flarelc.cadence = 'long' if dosinusoids: # add sinusoid flarelc.clc = flarelc.clc + amps[i] * np.sin( 2. * np.pi * freqs[i] * ts + phase[i]) #pl.plot(flarelc.cts, flarelc.clc) #pl.show() # get noise standard deviation from a detrended lightcurve tmpcurve = copy(flarelc) tmpcurve.detrend(bglen, bgorder) #sk = bf.estimate_noise_ps(tmpcurve, estfrac=0.5)[0] # noise standard deviation sk = bf.estimate_noise_tv(tmpcurve.clc, sigma=1.0)[0] del tmpcurve # set central time of the injection randomly (but not within bglen/2 of data edges) idxt0 = np.random.randint(int(bglen / 2), len(ts) - int(bglen / 2) - 1) t0 = flarelc.cts[idxt0] if outd: fparams = open(paramout, 'a') # open output parameter file for appending # create injections if opts.injtransit: # create a transit Mti = bf.Transit(flarelc.cts, amp=1) injdata = np.copy( Mti.model(1., sigmags[i], taufs[i], t0, flarelc.cts))