verbose = 0
    bSize = 850

    fntrain = "/home/philgun/Documents/PhD/Modelica/receiver-data/training_data_cascade_constant_size_AR_clean.csv"
    fntest = "/home/philgun/Documents/PhD/Modelica/receiver-data/validation_data_cascade_constant_size_AR_const.csv"
    wd = "./multi_aperture_6"

    #MinMax or StandardScaler
    scaler = "MinMax"

    if not os.path.exists(wd):
        os.makedirs(wd)

    print(len(pd.read_csv(fntrain)))

    arr = lib.preprocessing(wd, fntrain, fntest, 13, 1, scaling_method=scaler)

    #Print X and y train raw - to check whether training and test data have been parsed correctly
    print("X train raw :\n", arr[-3])
    print("y train :\n", arr[-2])

    #Print X and y test raw - to check whether training and test data have been parsed correctly
    print("X test raw :\n", arr[-1])
    print("y test raw :\n", arr[5])

    #******************************* Test build model
    model = lib.generate_model(arr, dropout=0.1, nPercent=0.25, nShrink=0.9)
    model.summary()

    #******************************* Partially initialise the eval_net func
    objfunc = functools.partial(lib.eval_net, wd, verbose, scaler, arr, bSize)
예제 #2
0
import time
import functools

from matplotlib import pyplot as plt

import bayesian as lib

if __name__ == "__main__":
    verbose = 0
    bSize = 850

    fntrain = "/home/philgun/Documents/PhD/Modelica/receiver-data/training_data_constant_AR_H_drop_T_out.csv"
    fntest = "/home/philgun/Documents/PhD/Modelica/receiver-data/validation_data_constant_AR_H_drop_T_out.csv"
    wd = "./single_aperture_constant_T_out_2"

    arr = lib.preprocessing(wd,fntrain,fntest,7,1)

    print(arr[-2])
    print(arr[-1])

    print(arr[5])

    #******************************* Test build model
    model = lib.generate_model(arr,dropout=0.1,nPercent=0.25,nShrink=0.9)
    model.summary()

    objfunc = functools.partial(
        lib.eval_net,
        wd,
        verbose,
        arr,
    #************************************* Create dir w.r.t. mode
    if not os.path.exists(wd):
        os.makedirs(wd)

    #************************************* Prep data
    data = utils.Data("./data/LC_model_temp_control.mat")
    df = data.get_data()[3:].drop(columns="time")
    split_df(df, fraction=0.3)

    scaler = "MinMax"
    inputsize = df.shape[1] - 1
    outputsize = 1
    bSize = 64

    #*************************************** Generate training test data set and also scalers etc.
    arr = lib.preprocessing(wd, fntrain, fntest, inputsize, outputsize, scaler)

    #Print X and y train raw - to check whether training and test data have been parsed correctly
    print("X train raw :\n", arr[-3])
    print("y train raw:\n", arr[-2])

    #Print X and y test raw - to check whether training and test data have been parsed correctly
    print("X test raw :\n", arr[-1])
    print("y test raw :\n", arr[5])

    #************************************** Function test
    model = lib.generate_model(arr, dropout=0.1, nPercent=0.25, nShrink=0.9)
    model.summary()

    #************************************** Partially initialise the objective function
    objfunc = functools.partial(lib.eval_net,