예제 #1
0
def test_ds_concat(ds, n):
    all_dims = [ds[kk].dims for kk in ds]
    common_dims = sorted(intersect_seq(all_dims))

    n = min([n, len(common_dims) - 1])
    assume(0 < n)

    keys_to_slice = common_dims[:n]
    ds_dict = {}
    vals = [ds.coords[kk].values.tolist() for kk in keys_to_slice]
    for vv in product(*vals):
        lookup = dict(zip(keys_to_slice, vv))
        ds_dict[vv] = ds.sel(lookup, drop=True)

    xru.ds_concat(ds_dict, dims=keys_to_slice)
def do_baseline(args):  # pragma: io
    """Alternate entry into the program without calling the actual main.
    """
    # Load in the eval data and sanity check
    perf_ds, meta = XRSerializer.load_derived(args[CmdArgs.db_root], db=args[CmdArgs.db], key=cc.EVAL_RESULTS)
    logger.info("Meta data from source file: %s" % str(meta["args"]))

    D = OrderedDict()
    for kk in perf_ds:
        perf_da = perf_ds[kk]
        D[(kk,)] = compute_baseline(perf_da)
    baseline_ds = ds_concat(D, dims=(cc.OBJECTIVE,))

    # Keep in same order for cleanliness
    baseline_ds = baseline_ds.sel({cc.OBJECTIVE: list(perf_ds)})
    assert list(perf_ds) == baseline_ds.coords[cc.OBJECTIVE].values.tolist()

    # Could optionally remove this once we think things have enough tests
    for kk in D:
        assert baseline_ds.sel({cc.OBJECTIVE: kk[0]}, drop=True).identical(D[kk])

    # Now dump the results
    XRSerializer.save_derived(baseline_ds, meta, args[CmdArgs.db_root], db=args[CmdArgs.db], key=cc.BASELINE)
def concat_experiments(all_experiments, ravel=False):
    """Aggregate the Datasets from a series of experiments into combined Dataset.

    Parameters
    ----------
    all_experiments : typing.Iterable
        Iterable (possible from a generator) with the Datasets from each experiment. Each item in `all_experiments` is
        a pair containing ``(meta_data, data)``. See `load_experiments` for details on these variables,
    ravel : bool
        If true, ravel all studies to store batch suggestions as if they were serial.

    Returns
    -------
    all_perf : :class:`xarray:xarray.Dataset`
        DataArray containing all of the `perf_da` from the experiments. The meta-data from the experiments are included
        as extra dimensions. `all_perf` has dimensions ``(ITER, SUGGEST, TEST_CASE, METHOD, TRIAL)``. To convert the
        `uuid` to a trial, there must be an equal number of repetition in the experiments for each `TEST_CASE`,
        `METHOD` combination. Likewise, all of the experiments need an equal number of `ITER` and `SUGGEST`. If `ravel`
        is true, then the `SUGGEST` is singleton.
    all_time : :class:`xarray:xarray.Dataset`
        Dataset containing all of the `time_ds` from the experiments. The new dimensions are
        ``(ITER, TEST_CASE, METHOD, TRIAL)``. It has the same variables as `time_ds`.
    all_suggest : :class:`xarray:xarray.Dataset`
        DataArray containing all of the `suggest_ds` from the experiments. It has dimensions
        ``(ITER, SUGGEST, TEST_CASE, METHOD, TRIAL)``.
    all_sigs : dict(str, list(list(float)))
        Aggregate of all experiment signatures.
    """
    all_perf = {}
    all_time = {}
    all_suggest = {}
    all_sigs = {}
    trial_counter = Counter()
    for (test_case, optimizer, uuid), (perf_ds, time_ds, suggest_ds, sig) in all_experiments:
        if ravel:
            raise NotImplementedError("ravel is deprecated. Just reshape in analysis steps instead.")

        case_key = (test_case, optimizer, trial_counter[(test_case, optimizer)])
        trial_counter[(test_case, optimizer)] += 1

        # Process perf data
        assert all(perf_ds[kk].dims == (ITER, SUGGEST) for kk in perf_ds)
        all_perf[case_key] = perf_ds

        # Process time data
        all_time[case_key] = summarize_time(time_ds)

        # Process suggestion data
        all_suggest_curr = all_suggest.setdefault(test_case, {})
        all_suggest_curr[case_key] = suggest_ds

        # Handle the signatures
        all_sigs.setdefault(test_case, []).append(sig)
    assert min(trial_counter.values()) == max(trial_counter.values()), "Uneven number of trials per test case"

    # Now need to concat dict of datasets into single dataset
    all_perf = xru.ds_concat(all_perf, dims=(TEST_CASE, METHOD, TRIAL))
    assert all(all_perf[kk].dims == (ITER, SUGGEST, TEST_CASE, METHOD, TRIAL) for kk in all_perf)
    assert not any(
        np.any(np.isnan(all_perf[kk].values)) for kk in all_perf
    ), "Missing combinations of method and test case"

    all_time = xru.ds_concat(all_time, dims=(TEST_CASE, METHOD, TRIAL))
    assert all(all_time[kk].dims == (ITER, TEST_CASE, METHOD, TRIAL) for kk in all_time)
    assert not any(np.any(np.isnan(all_time[kk].values)) for kk in all_time)
    assert xru.coord_compat((all_perf, all_time), (ITER, TEST_CASE, METHOD, TRIAL))

    for test_case in all_suggest:
        all_suggest[test_case] = xru.ds_concat(all_suggest[test_case], dims=(TEST_CASE, METHOD, TRIAL))
        assert all(
            all_suggest[test_case][kk].dims == (ITER, SUGGEST, TEST_CASE, METHOD, TRIAL)
            for kk in all_suggest[test_case]
        )
        assert not any(np.any(np.isnan(all_suggest[test_case][kk].values)) for kk in all_suggest[test_case])
        assert xru.coord_compat((all_perf, all_suggest[test_case]), (ITER, METHOD, TRIAL))
        assert all_suggest[test_case].coords[TEST_CASE].shape == (1,), "test case should be singleton"

    return all_perf, all_time, all_suggest, all_sigs
예제 #4
0
def concat_experiments(all_experiments, ravel=False):
    """Aggregate the Datasets from a series of experiments into combined Dataset.

    Parameters
    ----------
    all_experiments : typing.Iterable
        Iterable (possible from a generator) with the Datasets from each experiment. Each item in `all_experiments` is
        a pair containing ``(meta_data, data)``. The `meta_data` contains a `tuple` of `str` with
        ``test_case, optimizer, uuid``. The `data` contains a tuple of ``(perf_da, time_ds, sig)``. The `perf_da` is an
        :class:`xarray:xarray.DataArray` containing the evaluation results with dimensions ``(ITER, SUGGEST)``. The
        `time_ds` is an :class:`xarray:xarray.Dataset` containing the timing results of the form accepted by
        `summarize_time`. The coordinates must be compatible with `perf_da`. Finally, `sig` contains the `test_case`
        signature and must be `list(float)`.
    ravel : bool
        If true, ravel all studies to store batch suggestions as if they were serial.

    Returns
    -------
    all_perf : :class:`xarray:xarray.DataArray`
        DataArray containing all of the `perf_da` from the experiments. The meta-data from the experiments are included
        as extra dimensions. `all_perf` has dimensions ``(ITER, SUGGEST, TEST_CASE, METHOD, TRIAL)``. To convert the
        `uuid` to a trial, there must be an equal number of repetition in the experiments for each `TEST_CASE`,
        `METHOD` combination. Likewise, all of the experiments need an equal number of `ITER` and `SUGGEST`. If `ravel`
        is true, then the `SUGGEST` is singleton.
    all_time : :class:`xarray:xarray.Dataset`
        Dataset containing all of the `time_ds` from the experiments. The new dimensions are
        ``(ITER, TEST_CASE, METHOD, TRIAL)``. It has the same variables as `time_ds`.
    all_sigs : dict(str, list(list(float)))
        Aggregate of all experiment signatures.
    """
    all_perf = {}
    all_time = {}
    all_sigs = {}
    trial_counter = Counter()
    for (test_case, optimizer, uuid), (perf_da, time_ds,
                                       sig) in all_experiments:
        if ravel:
            n_suggest = perf_da.sizes[SUGGEST]
            perf_da = _ravel_perf(perf_da)
            time_ds = _ravel_time(time_ds)
            optimizer = str_join_safe(ARG_DELIM,
                                      (optimizer, "p%d" % n_suggest),
                                      append=True)

        case_key = (test_case, optimizer, trial_counter[(test_case,
                                                         optimizer)])
        trial_counter[(test_case, optimizer)] += 1

        # Process perf data
        assert perf_da.dims == (ITER, SUGGEST)
        all_perf[case_key] = perf_da

        # Process time data
        all_time[case_key] = summarize_time(time_ds)

        # Handle the signatures
        all_sigs.setdefault(test_case, []).append(sig)
    assert min(trial_counter.values()) == max(
        trial_counter.values()), "Uneven number of trials per test case"

    # Now need to concat dict of datasets into single dataset
    all_perf = xru.da_concat(all_perf, dims=(TEST_CASE, METHOD, TRIAL))
    assert all_perf.dims == (ITER, SUGGEST, TEST_CASE, METHOD, TRIAL)
    assert not np.any(np.isnan(
        all_perf.values)), "Missing combinations of method and test case"

    all_time = xru.ds_concat(all_time, dims=(TEST_CASE, METHOD, TRIAL))
    assert all(all_time[kk].dims == (ITER, TEST_CASE, METHOD, TRIAL)
               for kk in all_time)
    assert not any(np.any(np.isnan(all_time[kk].values)) for kk in all_time)
    assert xru.coord_compat((all_perf, all_time),
                            (ITER, TEST_CASE, METHOD, TRIAL))

    return all_perf, all_time, all_sigs