예제 #1
0
 def predict(self, x, return_var=False):
     y = SumMultiply('i,i', self.weights, x)
     y_hat, var = y.get_moments()
     if return_var:
         return y_hat, var
     else:
         return y_hat
예제 #2
0
def _setup_linear_regression():
    """
    Setup code for the pdf and contour tests.

    This code is from http://www.bayespy.org/examples/regression.html
    """
    np.random.seed(1)
    k = 2  # slope
    c = 5  # bias
    s = 2  # noise standard deviation

    x = np.arange(10)
    y = k * x + c + s * np.random.randn(10)
    X = np.vstack([x, np.ones(len(x))]).T

    B = GaussianARD(0, 1e-6, shape=(2, ))

    F = SumMultiply('i,i', B, X)

    tau = Gamma(1e-3, 1e-3)
    Y = GaussianARD(F, tau)
    Y.observe(y)

    Q = VB(Y, B, tau)
    Q.update(repeat=1000)
    xh = np.linspace(-5, 15, 100)
    Xh = np.vstack([xh, np.ones(len(xh))]).T
    Fh = SumMultiply('i,i', B, Xh)

    return locals()
예제 #3
0
def model(M=10, N=100, D=3):
    """
    Construct linear state-space model.

    See, for instance, the following publication:
    "Fast variational Bayesian linear state-space model"
    Luttinen (ECML 2013)
    """

    # Dynamics matrix with ARD
    alpha = Gamma(1e-5, 1e-5, plates=(D, ), name='alpha')
    A = GaussianARD(0,
                    alpha,
                    shape=(D, ),
                    plates=(D, ),
                    plotter=bpplt.GaussianHintonPlotter(rows=0,
                                                        cols=1,
                                                        scale=0),
                    name='A')
    A.initialize_from_value(np.identity(D))

    # Latent states with dynamics
    X = GaussianMarkovChain(
        np.zeros(D),  # mean of x0
        1e-3 * np.identity(D),  # prec of x0
        A,  # dynamics
        np.ones(D),  # innovation
        n=N,  # time instances
        plotter=bpplt.GaussianMarkovChainPlotter(scale=2),
        name='X')
    X.initialize_from_value(np.random.randn(N, D))

    # Mixing matrix from latent space to observation space using ARD
    gamma = Gamma(1e-5, 1e-5, plates=(D, ), name='gamma')
    gamma.initialize_from_value(1e-2 * np.ones(D))
    C = GaussianARD(0,
                    gamma,
                    shape=(D, ),
                    plates=(M, 1),
                    plotter=bpplt.GaussianHintonPlotter(rows=0,
                                                        cols=2,
                                                        scale=0),
                    name='C')
    C.initialize_from_value(np.random.randn(M, 1, D))

    # Observation noise
    tau = Gamma(1e-5, 1e-5, name='tau')
    tau.initialize_from_value(1e2)

    # Underlying noiseless function
    F = SumMultiply('i,i', C, X, name='F')

    # Noisy observations
    Y = GaussianARD(F, tau, name='Y')

    Q = VB(Y, F, C, gamma, X, A, alpha, tau, C)

    return Q
예제 #4
0
    def fit(self, X, y):
        self.weights = GaussianARD(0, 1e-6, shape=(X.shape[-1], ))
        y_mean = SumMultiply('i,i', self.weights, X)
        precision = Gamma(1, .1)
        y_obs = GaussianARD(y_mean, precision)
        y_obs.observe(y)

        Q = VB(y_obs, self.weights, precision)
        Q.update(repeat=self.n_iter, tol=self.tolerance, verbose=False)
예제 #5
0
    def fit(self, X, y):
        self._init_weights()
        # self.cost,
        # self.myopic_voc(action, state),
        # self.vpi_action(action, state),
        # self.vpi(state),
        # self.expected_term_reward(state)

        self.tau = Gamma(self.prior_a, self.prior_b)
        F = SumMultiply('i,i', self.weights, X)
        y_obs = GaussianARD(F, self.tau)
        y_obs.observe(y)

        Q = VB(y_obs, self.weights)
        Q.update(repeat=10, tol=1e-4, verbose=False)
예제 #6
0
def pca():

    np.random.seed(41)

    M = 10
    N = 3000
    D = 5

    # Construct the PCA model
    alpha = Gamma(1e-3, 1e-3, plates=(D, ), name='alpha')
    W = GaussianARD(0, alpha, plates=(M, 1), shape=(D, ), name='W')
    X = GaussianARD(0, 1, plates=(1, N), shape=(D, ), name='X')
    tau = Gamma(1e-3, 1e-3, name='tau')
    W.initialize_from_random()
    F = SumMultiply('d,d->', W, X)
    Y = GaussianARD(F, tau, name='Y')

    # Observe data
    data = np.sum(np.random.randn(M, 1, D - 1) * np.random.randn(1, N, D - 1),
                  axis=-1) + 1e-1 * np.random.randn(M, N)
    Y.observe(data)

    # Initialize VB engine
    Q = VB(Y, X, W, alpha, tau)

    # Take one update step (so phi is ok)
    Q.update(repeat=1)
    Q.save()

    # Run VB-EM
    Q.update(repeat=200)
    bpplt.pyplot.plot(np.cumsum(Q.cputime), Q.L, 'k-')

    # Restore the state
    Q.load()

    # Run Riemannian conjugate gradient
    #Q.optimize(X, alpha, maxiter=100, collapsed=[W, tau])
    Q.optimize(W, tau, maxiter=100, collapsed=[X, alpha])
    bpplt.pyplot.plot(np.cumsum(Q.cputime), Q.L, 'r:')

    bpplt.pyplot.show()
예제 #7
0
import numpy
numpy.random.seed(1)
M = 20
N = 100
import numpy as np
x = np.random.randn(N, 2)
w = np.random.randn(M, 2)
f = np.einsum('ik,jk->ij', w, x)
y = f + 0.1 * np.random.randn(M, N)
D = 10
from bayespy.nodes import GaussianARD, Gamma, SumMultiply
X = GaussianARD(0, 1, plates=(1, N), shape=(D, ))
alpha = Gamma(1e-5, 1e-5, plates=(D, ))
C = GaussianARD(0, alpha, plates=(M, 1), shape=(D, ))
F = SumMultiply('d,d->', X, C)
tau = Gamma(1e-5, 1e-5)
Y = GaussianARD(F, tau)
Y.observe(y)
from bayespy.inference import VB
Q = VB(Y, X, C, alpha, tau)
C.initialize_from_random()
from bayespy.inference.vmp.transformations import RotateGaussianARD
rot_X = RotateGaussianARD(X)
rot_C = RotateGaussianARD(C, alpha)
from bayespy.inference.vmp.transformations import RotationOptimizer
R = RotationOptimizer(rot_X, rot_C, D)
Q.set_callback(R.rotate)
Q.update(repeat=1000)
import bayespy.plot as bpplt
bpplt.plot(F)
bpplt.plot(f, color='r', marker='x', linestyle='None')
예제 #8
0
    for xx in x2:
        if firstline:
            y = np.mean(xx)
            firstline = False
            continue
        y = np.vstack([y, (k * np.mean(xx) + c + s * np.random.randn(1))])

    y = y.reshape(y.shape[0], )

    X = x2.reshape(x2.shape[0], 1)

    from bayespy.nodes import GaussianARD
    B = GaussianARD(0, 1e-6, shape=(X.shape[1], ))
    from bayespy.nodes import SumMultiply
    F = SumMultiply('i,i', B, X)

    from bayespy.nodes import Gamma
    tau = Gamma(1e-3, 1e-3)
    Y = GaussianARD(F, tau)
    Y.observe(y)
    from bayespy.inference import VB
    Q = VB(Y, B, tau)
    #Q.update(repeat=100990)
    distribution = []
    result = []
    distribution = F.get_moments()
    for min_val, max_val in zip(distribution[0], distribution[1]):
        #mean = []
        mean = (min_val + max_val) / 2
        result.append(mean)
예제 #9
0
파일: lssm_sd.py 프로젝트: zehsilva/bayespy
def model(M=20, N=100, D=10, K=3):
    """
    Construct the linear state-space model with switching dynamics.
    """

    #
    # Switching dynamics (HMM)
    #

    # Prior for initial state probabilities
    rho = Dirichlet(1e-3 * np.ones(K), name='rho')

    # Prior for state transition probabilities
    V = Dirichlet(1e-3 * np.ones(K), plates=(K, ), name='V')
    v = 10 * np.identity(K) + 1 * np.ones((K, K))
    v /= np.sum(v, axis=-1, keepdims=True)
    V.initialize_from_value(v)

    # Hidden states (with unknown initial state probabilities and state
    # transition probabilities)
    Z = CategoricalMarkovChain(rho,
                               V,
                               states=N - 1,
                               name='Z',
                               plotter=bpplt.CategoricalMarkovChainPlotter(),
                               initialize=False)
    Z.u[0] = np.random.dirichlet(np.ones(K))
    Z.u[1] = np.reshape(
        np.random.dirichlet(0.5 * np.ones(K * K), size=(N - 2)), (N - 2, K, K))

    #
    # Linear state-space models
    #

    # Dynamics matrix with ARD
    # (K,D) x ()
    alpha = Gamma(1e-5, 1e-5, plates=(K, 1, D), name='alpha')
    # (K,1,1,D) x (D)
    A = GaussianARD(0,
                    alpha,
                    shape=(D, ),
                    plates=(K, D),
                    name='A',
                    plotter=bpplt.GaussianHintonPlotter())
    A.initialize_from_value(
        np.identity(D) * np.ones((K, D, D)) + 0.1 * np.random.randn(K, D, D))

    # Latent states with dynamics
    # (K,1) x (N,D)
    X = SwitchingGaussianMarkovChain(
        np.zeros(D),  # mean of x0
        1e-3 * np.identity(D),  # prec of x0
        A,  # dynamics
        Z,  # dynamics selection
        np.ones(D),  # innovation
        n=N,  # time instances
        name='X',
        plotter=bpplt.GaussianMarkovChainPlotter())
    X.initialize_from_value(10 * np.random.randn(N, D))

    # Mixing matrix from latent space to observation space using ARD
    # (K,1,1,D) x ()
    gamma = Gamma(1e-5, 1e-5, plates=(D, ), name='gamma')
    # (K,M,1) x (D)
    C = GaussianARD(0,
                    gamma,
                    shape=(D, ),
                    plates=(M, 1),
                    name='C',
                    plotter=bpplt.GaussianHintonPlotter(rows=-3, cols=-1))
    C.initialize_from_value(np.random.randn(M, 1, D))

    # Underlying noiseless function
    # (K,M,N) x ()
    F = SumMultiply('i,i', C, X, name='F')

    #
    # Mixing the models
    #

    # Observation noise
    tau = Gamma(1e-5, 1e-5, name='tau')
    tau.initialize_from_value(1e2)

    # Emission/observation distribution
    Y = GaussianARD(F, tau, name='Y')

    Q = VB(Y, F, Z, rho, V, C, gamma, X, A, alpha, tau)

    return Q
예제 #10
0
def model(M, N, D, K):
    """
    Construct the linear state-space model with time-varying dynamics

    For reference, see the following publication:
    (TODO)
    """

    #
    # The model block for the latent mixing weight process
    #

    # Dynamics matrix with ARD
    # beta : (K) x ()
    beta = Gamma(1e-5, 1e-5, plates=(K, ), name='beta')
    # B : (K) x (K)
    B = GaussianARD(np.identity(K),
                    beta,
                    shape=(K, ),
                    plates=(K, ),
                    name='B',
                    plotter=bpplt.GaussianHintonPlotter(rows=0,
                                                        cols=1,
                                                        scale=0),
                    initialize=False)
    B.initialize_from_value(np.identity(K))

    # Mixing weight process, that is, the weights in the linear combination of
    # state dynamics matrices
    # S : () x (N,K)
    S = GaussianMarkovChain(np.ones(K),
                            1e-6 * np.identity(K),
                            B,
                            np.ones(K),
                            n=N,
                            name='S',
                            plotter=bpplt.GaussianMarkovChainPlotter(scale=2),
                            initialize=False)
    s = 10 * np.random.randn(N, K)
    s[:, 0] = 10
    S.initialize_from_value(s)

    #
    # The model block for the latent states
    #

    # Projection matrix of the dynamics matrix
    # alpha : (K) x ()
    alpha = Gamma(1e-5, 1e-5, plates=(D, K), name='alpha')
    alpha.initialize_from_value(1 * np.ones((D, K)))
    # A : (D) x (D,K)
    A = GaussianARD(0,
                    alpha,
                    shape=(D, K),
                    plates=(D, ),
                    name='A',
                    plotter=bpplt.GaussianHintonPlotter(rows=0,
                                                        cols=1,
                                                        scale=0),
                    initialize=False)

    # Initialize S and A such that A*S is almost an identity matrix
    a = np.zeros((D, D, K))
    a[np.arange(D), np.arange(D), np.zeros(D, dtype=int)] = 1
    a[:, :, 0] = np.identity(D) / s[0, 0]
    a[:, :, 1:] = 0.1 / s[0, 0] * np.random.randn(D, D, K - 1)
    A.initialize_from_value(a)

    # Latent states with dynamics
    # X : () x (N,D)
    X = VaryingGaussianMarkovChain(
        np.zeros(D),  # mean of x0
        1e-3 * np.identity(D),  # prec of x0
        A,  # dynamics matrices
        S._convert(GaussianMoments)[1:],  # temporal weights
        np.ones(D),  # innovation
        n=N,  # time instances
        name='X',
        plotter=bpplt.GaussianMarkovChainPlotter(scale=2),
        initialize=False)
    X.initialize_from_value(np.random.randn(N, D))

    #
    # The model block for observations
    #

    # Mixing matrix from latent space to observation space using ARD
    # gamma : (D) x ()
    gamma = Gamma(1e-5, 1e-5, plates=(D, ), name='gamma')
    gamma.initialize_from_value(1e-2 * np.ones(D))
    # C : (M,1) x (D)
    C = GaussianARD(0,
                    gamma,
                    shape=(D, ),
                    plates=(M, 1),
                    name='C',
                    plotter=bpplt.GaussianHintonPlotter(rows=0,
                                                        cols=2,
                                                        scale=0))
    C.initialize_from_value(np.random.randn(M, 1, D))

    # Noiseless process
    # F : (M,N) x ()
    F = SumMultiply('d,d', C, X, name='F')

    # Observation noise
    # tau : () x ()
    tau = Gamma(1e-5, 1e-5, name='tau')
    tau.initialize_from_value(1e2)

    # Observations
    # Y: (M,N) x ()
    Y = GaussianARD(F, tau, name='Y')

    # Construct inference machine
    Q = VB(Y, F, C, gamma, X, A, alpha, tau, S, B, beta)

    return Q