def _contour_t(mu, Cov, nu, axes=None, scale=4, transpose=False, colors='k'): """ """ if axes is None: axes = plt.gca() if np.shape(mu) != (2,) or np.shape(Cov) != (2,2) or np.shape(nu) != (): print(np.shape(mu), np.shape(Cov), np.shape(nu)) raise ValueError("Only 2-d t-distribution allowed") if transpose: mu = mu[[1,0]] Cov = Cov[np.ix_([1,0],[1,0])] s = np.sqrt(np.diag(Cov)) x0 = np.linspace(mu[0]-scale*s[0], mu[0]+scale*s[0], num=100) x1 = np.linspace(mu[1]-scale*s[1], mu[1]+scale*s[1], num=100) X0X1 = misc.grid(x0, x1) Y = X0X1 - mu L = linalg.chol(Cov) logdet_Cov = linalg.chol_logdet(L) Z = linalg.chol_solve(L, Y) Z = linalg.inner(Y, Z, ndim=1) lpdf = random.t_logpdf(Z, logdet_Cov, nu, 2) p = np.exp(lpdf) shape = (np.size(x0), np.size(x1)) X0 = np.reshape(X0X1[:,0], shape) X1 = np.reshape(X0X1[:,1], shape) P = np.reshape(p, shape) return axes.contour(X0, X1, P, colors=colors)
def gaussian_mixture_logpdf(x, w, mu, Sigma): # Shape(x) = (N, D) # Shape(w) = (K,) # Shape(mu) = (K, D) # Shape(Sigma) = (K, D, D) # Shape(result) = (N,) # Dimensionality D = np.shape(x)[-1] # Cholesky decomposition of the covariance matrix U = linalg.chol(Sigma) # Reshape x: # Shape(x) = (N, 1, D) x = np.expand_dims(x, axis=-2) # (x-mu) and (x-mu)'*inv(Sigma)*(x-mu): # Shape(v) = (N, K, D) # Shape(z) = (N, K) v = x - mu z = np.einsum('...i,...i', v, linalg.chol_solve(U, v)) # Log-determinant of Sigma: # Shape(ldet) = (K,) ldet = linalg.chol_logdet(U) # Compute log pdf for each cluster: # Shape(lpdf) = (N, K) lpdf = misc.gaussian_logpdf(z, 0, 0, ldet, D)
def check_X(self, mask): """ Check update equations of parent X. Use a simple model that has parent nodes and a child node around MatrixDot. """ # Parent nodes A = Gaussian(self.a.reshape((self.D3,self.D2,1,self.M*self.N)), np.identity(self.M*self.N), name='A') X = Gaussian(np.zeros(self.N), np.identity(self.N), plates=(self.D3,1,self.D1), name='X') # Node itself AX = MatrixDot(A, X, name='AX') # Child node Y = Gaussian(AX, self.Lambda, plates=(self.D4,self.D3,self.D2,self.D1), name='Y') # Put in data Y.observe(self.y, mask=mask) # VB model Q = VB(Y, X) Q.update(X, repeat=1) u = X.get_moments() # Compute true solution mask = np.ones((self.D4,self.D3,self.D2,self.D1)) * mask vv = mask[...,np.newaxis,np.newaxis] * self.vv aa = np.einsum('...ki,...kl,...lj->...ij', self.a, vv, self.a) aa = aa + np.einsum('...ij,...kl,...kl->...ij', np.identity(self.N), np.identity(self.M), vv) aa = np.sum(aa, axis=2, keepdims=True) aa = np.sum(aa, axis=0) Cov_X = linalg.chol_inv(linalg.chol(aa + np.identity(self.N))) mu_X = np.einsum('...kj,...kl,...l->...j', self.a, vv, self.y) mu_X = np.sum(mu_X, axis=2, keepdims=True) mu_X = np.sum(mu_X, axis=0) mu_X = np.einsum('...ij,...j->...i', Cov_X, mu_X) # Compare VB results to the analytic solution: Cov_vb = u[1] - u[0][...,np.newaxis,:]*u[0][...,:,np.newaxis] testing.assert_allclose(Cov_vb, Cov_X, err_msg="Incorrect second moment.") testing.assert_allclose(u[0], mu_X, err_msg="Incorrect first moment.")
def check_A(self, mask): """ Check update equations of parent A. Use a simple model that has parent nodes and a child node around MatrixDot. """ # Parent nodes A = Gaussian(np.zeros(self.M*self.N), np.identity(self.M*self.N), plates=(self.D3,self.D2,1), name='A') X = Gaussian(self.x, np.identity(self.N), name='X') # Node itself AX = MatrixDot(A, X, name='AX') # Child node Y = Gaussian(AX, self.Lambda, plates=(self.D4,self.D3,self.D2,self.D1), name='Y') # Put in data Y.observe(self.y, mask=mask) # VB model Q = VB(Y, A) Q.update(A, repeat=1) u = A.get_moments() # Compute true solution mask = np.ones((self.D4,self.D3,self.D2,self.D1)) * mask vv = mask[...,np.newaxis,np.newaxis] * self.vv xx = (self.x[...,:,np.newaxis] * self.x[...,np.newaxis,:] + np.identity(self.N)) Cov_A = (vv[...,:,np.newaxis,:,np.newaxis] * xx[...,np.newaxis,:,np.newaxis,:]) # from data Cov_A = np.sum(Cov_A, axis=(0,3), keepdims=True) Cov_A = np.reshape(Cov_A, (self.D3,self.D2,1,self.M*self.N,self.M*self.N)) Cov_A = Cov_A + np.identity(self.M*self.N) # add prior Cov_A = linalg.chol_inv(linalg.chol(Cov_A)) mu_A = np.einsum('...ij,...j,...k->...ik', vv, self.y, self.x) mu_A = np.sum(mu_A, axis=(0,3)) mu_A = np.reshape(mu_A, (self.D3,self.D2,1,self.M*self.N)) mu_A = np.einsum('...ij,...j->...i', Cov_A, mu_A) # Compare VB results to the analytic solution: Cov_vb = u[1] - u[0][...,np.newaxis,:]*u[0][...,:,np.newaxis] testing.assert_allclose(Cov_vb, Cov_A, err_msg="Incorrect second moment.") testing.assert_allclose(u[0], mu_A, err_msg="Incorrect first moment.")
def compute_fixed_moments(self, Lambda, gradient=None): """ Compute moments for fixed x. """ L = linalg.chol(Lambda, ndim=self.ndim) ldet = linalg.chol_logdet(L, ndim=self.ndim) u = [Lambda, ldet] if gradient is None: return u du0 = gradient[0] du1 = ( misc.add_trailing_axes(gradient[1], 2*self.ndim) * linalg.chol_inv(L, ndim=self.ndim) ) du = du0 + du1 return (u, du)
def compute_fixed_moments_and_f(self, Lambda, mask=True): r""" Compute u(x) and f(x) for given x. .. math: u(\Lambda) = \begin{bmatrix} \Lambda \\ \log |\Lambda| \end{bmatrix} """ k = np.shape(Lambda)[-1] ldet = linalg.chol_logdet(linalg.chol(Lambda)) u = [Lambda, ldet] f = -(k+1)/2 * ldet return (u, f)
def compute_moments_and_cgf(self, phi, mask=True): r""" Return moments and cgf for given natural parameters .. math:: \langle u \rangle = \begin{bmatrix} \phi_2 (-\phi_1)^{-1} \\ -\log|-\phi_1| + \psi_k(\phi_2) \end{bmatrix} \\ g(\phi) = \phi_2 \log|-\phi_1| - \log \Gamma_k(\phi_2) """ U = linalg.chol(-phi[0]) k = np.shape(phi[0])[-1] #k = self.dims[0][0] logdet_phi0 = linalg.chol_logdet(U) u0 = phi[1][...,np.newaxis,np.newaxis] * linalg.chol_inv(U) u1 = -logdet_phi0 + misc.multidigamma(phi[1], k) u = [u0, u1] g = phi[1] * logdet_phi0 - special.multigammaln(phi[1], k) return (u, g)
def kalman_filter(y, U, A, V, mu0, Cov0, out=None): """ Perform Kalman filtering to obtain filtered mean and covariance. The parameters of the process may vary in time, thus they are given as iterators instead of fixed values. Parameters ---------- y : (N,D) array "Normalized" noisy observations of the states, that is, the observations multiplied by the precision matrix U (and possibly other transformation matrices). U : (N,D,D) array or N-list of (D,D) arrays Precision matrix (i.e., inverse covariance matrix) of the observation noise for each time instance. A : (N-1,D,D) array or (N-1)-list of (D,D) arrays Dynamic matrix for each time instance. V : (N-1,D,D) array or (N-1)-list of (D,D) arrays Covariance matrix of the innovation noise for each time instance. Returns ------- mu : array Filtered mean of the states. Cov : array Filtered covariance of the states. See also -------- rts_smoother """ mu = mu0 Cov = Cov0 # Allocate memory for the results (N, D) = np.shape(y) X = np.empty((N, D)) CovX = np.empty((N, D, D)) # Update step for t=0 M = np.dot(np.dot(Cov, U[0]), Cov) + Cov L = linalg.chol(M) mu = np.dot(Cov, linalg.chol_solve(L, np.dot(Cov, y[0]) + mu)) Cov = np.dot(Cov, linalg.chol_solve(L, Cov)) X[0, :] = mu CovX[0, :, :] = Cov # for (yn, Un, An, Vn) in zip(y, U, A, V): for n in range(len(y) - 1): # (yn, Un, An, Vn) in zip(y, U, A, V): # Prediction step mu = np.dot(A[n], mu) Cov = np.dot(np.dot(A[n], Cov), A[n].T) + V[n] # Update step M = np.dot(np.dot(Cov, U[n + 1]), Cov) + Cov L = linalg.chol(M) mu = np.dot(Cov, linalg.chol_solve(L, np.dot(Cov, y[n + 1]) + mu)) Cov = np.dot(Cov, linalg.chol_solve(L, Cov)) # Force symmetric covariance (for numeric inaccuracy) Cov = 0.5 * Cov + 0.5 * Cov.T # Store results X[n + 1, :] = mu CovX[n + 1, :, :] = Cov return (X, CovX)
def compute_fixed_moments(self, Lambda): """ Compute moments for fixed x. """ ldet = linalg.chol_logdet(linalg.chol(Lambda)) u = [Lambda, ldet] return u