예제 #1
0
 def run(self, config, config_file, parallel, dirs, lane_items):
     ## Alignment and preparation requiring the entire input file (multicore cluster)
     with prun.start(_wres(parallel, ["aligner"]),
                     lane_items, config, dirs, "multicore") as run_parallel:
         with profile.report("alignment", dirs):
             samples = run_parallel("process_alignment", lane_items)
         with profile.report("callable regions", dirs):
             samples = run_parallel("postprocess_alignment", samples)
             regions = run_parallel("combine_sample_regions", [samples])[0]
             samples = region.add_region_info(samples, regions)
             samples = region.clean_sample_data(samples)
     ## Processing on sub regions
     with prun.start(_wres(parallel, ["gatk", "picard", "samtools"]),
                     samples, config, dirs, "full",
                     multiplier=len(regions["analysis"]), max_multicore=1) as run_parallel:
         with profile.report("alignment post-processing", dirs):
             samples = region.parallel_prep_region(samples, regions, run_parallel)
             samples = region.parallel_variantcall_region(samples, run_parallel)
     print len(samples)
     ## Finalize BAMs and QC
     with prun.start(_wres(parallel, ["fastqc", "bamtools", "samtools"]),
                     samples, config, dirs, "multicore2") as run_parallel:
         with profile.report("prepped BAM merging", dirs):
             samples = region.delayed_bamprep_merge(samples, run_parallel)
         print len(samples)
         with profile.report("quality control", dirs):
             samples = qcsummary.generate_parallel(samples, run_parallel)
     logger.info("Timing: finished")
     return samples
예제 #2
0
 def run(self, config, run_info_yaml, parallel, dirs, samples):
     with prun.start(_wres(parallel, ["aligner"],
                           ensure_mem={"tophat": 8, "tophat2": 8, "star": 2}),
                     [samples[0]], config, dirs, "organize_samples") as run_parallel:
         with profile.report("organize samples", dirs):
             samples = run_parallel("organize_samples", [[dirs, config, run_info_yaml,
                                                          [x[0]["description"] for x in samples]]])
     with prun.start(_wres(parallel, ["picard", "cutadapt"]),
                     samples, config, dirs, "trimming") as run_parallel:
         with profile.report("adapter trimming", dirs):
             samples = run_parallel("prepare_sample", samples)
             samples = run_parallel("trim_sample", samples)
     with prun.start(_wres(parallel, ["aligner", "picard"],
                           ensure_mem={"tophat": 8, "tophat2": 8, "star": 2}),
                     samples, config, dirs, "alignment",
                     multiplier=alignprep.parallel_multiplier(samples)) as run_parallel:
         with profile.report("alignment", dirs):
             samples = run_parallel("disambiguate_split", [samples])
             samples = run_parallel("process_alignment", samples)
     with prun.start(_wres(parallel, ["samtools", "cufflinks"]),
                     samples, config, dirs, "rnaseqcount") as run_parallel:
         with profile.report("disambiguation", dirs):
             samples = disambiguate.resolve(samples, run_parallel)
         with profile.report("transcript assembly", dirs):
             samples = rnaseq.assemble_transcripts(run_parallel, samples)
         with profile.report("estimate expression", dirs):
             samples = rnaseq.estimate_expression(samples, run_parallel)
     with prun.start(_wres(parallel, ["picard", "fastqc", "rnaseqc", "kraken"]),
                     samples, config, dirs, "qc") as run_parallel:
         with profile.report("quality control", dirs):
             samples = qcsummary.generate_parallel(samples, run_parallel)
     logger.info("Timing: finished")
     return samples
예제 #3
0
파일: main.py 프로젝트: roryk/bcbio-nextgen
    def run(self, config, config_file, parallel, dirs, samples):
        with prun.start(parallel, samples, config, dirs, "trimming") as run_parallel:
            samples = run_parallel("trim_lane", samples)
        with prun.start(
            _wprogs(parallel, ["aligner"], {"tophat": 8, "tophat2": 8, "star": 30}),
            samples,
            config,
            dirs,
            "multicore",
            multiplier=alignprep.parallel_multiplier(samples),
        ) as run_parallel:
            samples = disambiguate.split(samples)
            samples = run_parallel("process_alignment", samples)
            samples = disambiguate.resolve(samples, run_parallel)

        with prun.start(
            _wprogs(parallel, ["samtools", "gatk", "cufflinks"]), samples, config, dirs, "rnaseqcount"
        ) as run_parallel:
            samples = rnaseq.estimate_expression(samples, run_parallel)
            # samples = rnaseq.detect_fusion(samples, run_parallel)

        combined = combine_count_files([x[0].get("count_file") for x in samples])
        organism = utils.get_in(samples[0][0], ("genome_resources", "aliases", "ensembl"), None)
        annotated = annotate_combined_count_file(combined, organism)
        for x in samples:
            x[0]["combined_counts"] = combined
            x[0]["annotated_combined_counts"] = annotated

        with prun.start(
            _wprogs(parallel, ["picard", "fastqc", "rnaseqc"]), samples, config, dirs, "persample"
        ) as run_parallel:
            samples = qcsummary.generate_parallel(samples, run_parallel)
        return samples
예제 #4
0
    def run(self, config, config_file, parallel, dirs, samples):
        ## Alignment and preparation requiring the entire input file (multicore cluster)
        with prun.start(_wres(parallel, ["aligner", "samtools", "sambamba"],
                              (["reference", "fasta"], ["reference", "aligner"], ["files"])),
                        samples, config, dirs, "multicore",
                        multiplier=alignprep.parallel_multiplier(samples)) as run_parallel:
            with profile.report("alignment preparation", dirs):
                samples = run_parallel("prep_align_inputs", samples)
                samples = disambiguate.split(samples)
            with profile.report("alignment", dirs):
                samples = run_parallel("process_alignment", samples)
                samples = alignprep.merge_split_alignments(samples, run_parallel)
                samples = disambiguate.resolve(samples, run_parallel)
            with profile.report("callable regions", dirs):
                samples = run_parallel("postprocess_alignment", samples)
                samples = run_parallel("combine_sample_regions", [samples])
                samples = region.clean_sample_data(samples)
            with profile.report("coverage", dirs):
                samples = coverage.summarize_samples(samples, run_parallel)

        ## Variant calling on sub-regions of the input file (full cluster)
        with prun.start(_wres(parallel, ["gatk", "picard", "variantcaller"]),
                        samples, config, dirs, "full",
                        multiplier=region.get_max_counts(samples), max_multicore=1) as run_parallel:
            with profile.report("alignment post-processing", dirs):
                samples = region.parallel_prep_region(samples, run_parallel)
            with profile.report("variant calling", dirs):
                samples = genotype.parallel_variantcall_region(samples, run_parallel)

        ## Finalize variants (per-sample cluster)
        with prun.start(_wres(parallel, ["gatk", "gatk-vqsr", "snpeff", "bcbio_variation"]),
                        samples, config, dirs, "persample") as run_parallel:
            with profile.report("joint squaring off/backfilling", dirs):
                samples = joint.square_off(samples, run_parallel)
            with profile.report("variant post-processing", dirs):
                samples = run_parallel("postprocess_variants", samples)
                samples = run_parallel("split_variants_by_sample", samples)
            with profile.report("validation", dirs):
                samples = run_parallel("compare_to_rm", samples)
                samples = genotype.combine_multiple_callers(samples)
        ## Finalizing BAMs and population databases, handle multicore computation
        with prun.start(_wres(parallel, ["gemini", "samtools", "fastqc", "bamtools", "bcbio_variation",
                                         "bcbio-variation-recall"]),
                        samples, config, dirs, "multicore2") as run_parallel:
            with profile.report("prepped BAM merging", dirs):
                samples = region.delayed_bamprep_merge(samples, run_parallel)
            with profile.report("ensemble calling", dirs):
                samples = ensemble.combine_calls_parallel(samples, run_parallel)
            with profile.report("validation summary", dirs):
                samples = validate.summarize_grading(samples)
            with profile.report("structural variation", dirs):
                samples = structural.run(samples, run_parallel)
            with profile.report("population database", dirs):
                samples = population.prep_db_parallel(samples, run_parallel)
            with profile.report("quality control", dirs):
                samples = qcsummary.generate_parallel(samples, run_parallel)
            with profile.report("archive", dirs):
                samples = archive.compress(samples, run_parallel)
        logger.info("Timing: finished")
        return samples
예제 #5
0
    def run(self, config, config_file, parallel, dirs, samples):
        with prun.start(_wres(parallel, ["picard"]),
                        samples, config, dirs, "trimming") as run_parallel:
            samples = run_parallel("process_lane", samples)
            samples = run_parallel("trim_lane", samples)
        with prun.start(_wres(parallel, ["aligner"],
                              ensure_mem={"tophat": 8, "tophat2": 8, "star": 30}),
                        samples, config, dirs, "multicore",
                        multiplier=alignprep.parallel_multiplier(samples)) as run_parallel:
            samples = disambiguate.split(samples)
            samples = run_parallel("process_alignment", samples)
            samples = disambiguate.resolve(samples, run_parallel)

        with prun.start(_wres(parallel, ["samtools", "cufflinks"]),
                        samples, config, dirs, "rnaseqcount") as run_parallel:
            samples = rnaseq.estimate_expression(samples, run_parallel)
            #samples = rnaseq.detect_fusion(samples, run_parallel)

        combined = combine_count_files([x[0].get("count_file") for x in samples])
        gtf_file = utils.get_in(samples[0][0], ('genome_resources', 'rnaseq',
                                                'transcripts'), None)
        annotated = annotate_combined_count_file(combined, gtf_file)
        for x in samples:
            x[0]["combined_counts"] = combined
            if annotated:
                x[0]["annotated_combined_counts"] = annotated

        with prun.start(_wres(parallel, ["picard", "fastqc", "rnaseqc"]),
                        samples, config, dirs, "persample") as run_parallel:
            samples = qcsummary.generate_parallel(samples, run_parallel)
        return samples
예제 #6
0
def chipseqpipeline(config, run_info_yaml, parallel, dirs, samples):
    with prun.start(_wres(parallel, ["aligner", "picard"]),
                    samples, config, dirs, "multicore",
                    multiplier=alignprep.parallel_multiplier(samples)) as run_parallel:
        with profile.report("organize samples", dirs):
            samples = run_parallel("organize_samples", [[dirs, config, run_info_yaml,
                                                            [x[0]["description"] for x in samples]]])
        with profile.report("alignment", dirs):
            samples = run_parallel("prepare_sample", samples)
            samples = run_parallel("trim_sample", samples)
            samples = run_parallel("disambiguate_split", [samples])
            samples = run_parallel("process_alignment", samples)

        with profile.report("disambiguation", dirs):
            samples = disambiguate.resolve(samples, run_parallel)
            samples = run_parallel("clean_chipseq_alignment", samples)

    with prun.start(_wres(parallel, ["peakcaller"]),
                    samples, config, dirs, "peakcalling",
                    multiplier = peaks._get_multiplier(samples)) as run_parallel:
        with profile.report("peakcalling", dirs):
            samples = peaks.peakcall_prepare(samples, run_parallel)

    with prun.start(_wres(parallel, ["picard", "fastqc"]),
                    samples, config, dirs, "qc") as run_parallel:
        with profile.report("quality control", dirs):
            samples = qcsummary.generate_parallel(samples, run_parallel)
        with profile.report("upload", dirs):
            samples = run_parallel("upload_samples", samples)
            for sample in samples:
                run_parallel("upload_samples_project", [sample])
    return samples
예제 #7
0
    def run(self, config, config_file, parallel, dirs, samples):
        with prun.start(_wres(parallel, ["picard", "AlienTrimmer"]),
                        samples, config, dirs, "trimming") as run_parallel:
            with profile.report("adapter trimming", dirs):
                samples = run_parallel("prepare_sample", samples)
                samples = run_parallel("trim_sample", samples)
        with prun.start(_wres(parallel, ["aligner", "picard"],
                              ensure_mem={"tophat": 8, "tophat2": 8, "star": 40}),
                        samples, config, dirs, "multicore",
                        multiplier=alignprep.parallel_multiplier(samples)) as run_parallel:
            with profile.report("alignment", dirs):
                samples = disambiguate.split(samples)
                samples = run_parallel("process_alignment", samples)
        with prun.start(_wres(parallel, ["samtools", "cufflinks"]),
                        samples, config, dirs, "rnaseqcount") as run_parallel:
            with profile.report("disambiguation", dirs):
                samples = disambiguate.resolve(samples, run_parallel)
            with profile.report("transcript assembly", dirs):
                samples = rnaseq.assemble_transcripts(run_parallel, samples)
            with profile.report("estimate expression", dirs):
                samples = rnaseq.estimate_expression(samples, run_parallel)

        with prun.start(_wres(parallel, ["picard", "fastqc", "rnaseqc","kraken"]),
                        samples, config, dirs, "persample") as run_parallel:
            with profile.report("quality control", dirs):
                samples = qcsummary.generate_parallel(samples, run_parallel)
        
        logger.info("Timing: finished")
        return samples
예제 #8
0
파일: main.py 프로젝트: Kisun/bcbio-nextgen
 def run(self, config, run_info_yaml, parallel, dirs, samples):
     ## Alignment and preparation requiring the entire input file (multicore cluster)
     with prun.start(_wres(parallel, ["aligner"]), samples, config, dirs, "multicore") as run_parallel:
         with profile.report("organize samples", dirs):
             samples = run_parallel(
                 "organize_samples", [[dirs, config, run_info_yaml, [x[0]["description"] for x in samples]]]
             )
         with profile.report("alignment", dirs):
             samples = run_parallel("process_alignment", samples)
         with profile.report("callable regions", dirs):
             samples = run_parallel("prep_samples", [samples])
             samples = run_parallel("postprocess_alignment", samples)
             samples = run_parallel("combine_sample_regions", [samples])
             samples = region.clean_sample_data(samples)
     ## Quality control
     with prun.start(
         _wres(parallel, ["fastqc", "bamtools", "samtools", "qsignature", "kraken"]),
         samples,
         config,
         dirs,
         "multicore2",
     ) as run_parallel:
         with profile.report("quality control", dirs):
             samples = qcsummary.generate_parallel(samples, run_parallel)
         with profile.report("upload", dirs):
             for sample in samples:
                 run_parallel("upload_samples", [sample])
     logger.info("Timing: finished")
     return samples
예제 #9
0
파일: main.py 프로젝트: Kisun/bcbio-nextgen
 def run(self, config, run_info_yaml, parallel, dirs, samples):
     with prun.start(
         _wres(parallel, ["aligner", "picard"]),
         samples,
         config,
         dirs,
         "multicore",
         multiplier=alignprep.parallel_multiplier(samples),
     ) as run_parallel:
         with profile.report("organize samples", dirs):
             samples = run_parallel(
                 "organize_samples", [[dirs, config, run_info_yaml, [x[0]["description"] for x in samples]]]
             )
         samples = run_parallel("prepare_sample", samples)
         samples = run_parallel("trim_sample", samples)
         samples = run_parallel("disambiguate_split", [samples])
         samples = run_parallel("process_alignment", samples)
     with prun.start(_wres(parallel, ["picard", "fastqc"]), samples, config, dirs, "persample") as run_parallel:
         with profile.report("disambiguation", dirs):
             samples = disambiguate.resolve(samples, run_parallel)
         samples = run_parallel("clean_chipseq_alignment", samples)
         samples = qcsummary.generate_parallel(samples, run_parallel)
         with profile.report("upload", dirs):
             for sample in samples:
                 run_parallel("upload_samples", [sample])
     return samples
예제 #10
0
 def run(self, config, config_file, parallel, dirs, samples):
     with prun.start(_wres(parallel, ["picard", "AlienTrimmer"]), samples, config, dirs, "trimming") as run_parallel:
         with profile.report("adapter trimming", dirs):
             samples = run_parallel("prepare_sample", samples)
             samples = run_parallel("trim_sample", samples)
         with prun.start(_wres(parallel, ["sailfish"]), samples, config, dirs, "sailfish") as run_parallel:
             with profile.report("sailfish", dirs):
                 samples = run_parallel("run_sailfish", samples)
     return samples
예제 #11
0
파일: main.py 프로젝트: roryk/bcbio-nextgen
 def run(self, config, config_file, parallel, dirs, lane_items):
     ## Alignment and preparation requiring the entire input file (multicore cluster)
     with prun.start(_wprogs(parallel, ["aligner"]), lane_items, config, dirs, "multicore") as run_parallel:
         logger.info("Timing: alignment")
         samples = run_parallel("process_alignment", lane_items)
     ## Finalize (per-sample cluster)
     with prun.start(_wprogs(parallel, ["fastqc", "bamtools"]), samples, config, dirs, "persample") as run_parallel:
         logger.info("Timing: quality control")
         samples = qcsummary.generate_parallel(samples, run_parallel)
     logger.info("Timing: finished")
     return samples
예제 #12
0
 def run(self, config, config_file, parallel, dirs, samples):
     with prun.start(_wres(parallel, ["aligner", "picard"]),
                     samples, config, dirs, "multicore",
                     multiplier=alignprep.parallel_multiplier(samples)) as run_parallel:
         samples = run_parallel("process_lane", samples)
         samples = run_parallel("trim_lane", samples)
         samples = disambiguate.split(samples)
         samples = run_parallel("process_alignment", samples)
     with prun.start(_wres(parallel, ["picard", "fastqc"]),
                     samples, config, dirs, "persample") as run_parallel:
         samples = run_parallel("clean_chipseq_alignment", samples)
         samples = qcsummary.generate_parallel(samples, run_parallel)
     return samples
예제 #13
0
 def run(self, config, run_info_yaml, parallel, dirs, samples):
     with prun.start(_wres(parallel, ["picard", "cutadapt"]),
                     samples, config, dirs, "trimming") as run_parallel:
         with profile.report("organize samples", dirs):
             samples = run_parallel("organize_samples", [[dirs, config, run_info_yaml,
                                                          [x[0]["description"] for x in samples]]])
         with profile.report("adapter trimming", dirs):
             samples = run_parallel("prepare_sample", samples)
             samples = run_parallel("trim_sample", samples)
         with prun.start(_wres(parallel, ["sailfish"]), samples, config, dirs,
                         "sailfish") as run_parallel:
             with profile.report("sailfish", dirs):
                 samples = run_parallel("run_sailfish", samples)
     return samples
예제 #14
0
def rnaseq_prep_samples(config, run_info_yaml, parallel, dirs, samples):
    """
    organizes RNA-seq and small-RNAseq samples, converting from BAM if
    necessary and trimming if necessary
    """
    pipeline = dd.get_in_samples(samples, dd.get_analysis)
    trim_reads_set = any([tz.get_in(["algorithm", "trim_reads"], d) for d in dd.sample_data_iterator(samples)])
    resources = ["picard"]
    needs_trimming = (_is_smallrnaseq(pipeline) or trim_reads_set)
    if needs_trimming:
        resources.append("atropos")
    with prun.start(_wres(parallel, resources),
                    samples, config, dirs, "trimming",
                    max_multicore=1 if not needs_trimming else None) as run_parallel:
        with profile.report("organize samples", dirs):
            samples = run_parallel("organize_samples", [[dirs, config, run_info_yaml,
                                                            [x[0]["description"] for x in samples]]])
            samples = run_parallel("prepare_sample", samples)
        if needs_trimming:
            with profile.report("adapter trimming", dirs):
                if _is_smallrnaseq(pipeline):
                    samples = run_parallel("trim_srna_sample", samples)
                else:
                    samples = run_parallel("trim_sample", samples)
    return samples
예제 #15
0
 def test_1_parallel_vcf_combine(self):
     """Parallel combination of VCF files, split by chromosome.
     """
     from bcbio.variation import vcfutils
     files = [
         os.path.join(self.var_dir, "S1-variants.vcf"),
         os.path.join(self.var_dir, "S2-variants.vcf")
     ]
     with make_workdir() as workdir:
         config = load_config(
             get_post_process_yaml(self.automated_dir, workdir))
         config["algorithm"] = {}
     region_dir = os.path.join(self.var_dir, "S1_S2-combined-regions")
     if os.path.exists(region_dir):
         shutil.rmtree(region_dir)
     if os.path.exists(self.combo_file):
         os.remove(self.combo_file)
     reqs = {"type": "local", "cores": 1}
     with prun.start(reqs, [[config]], config) as run_parallel:
         vcfutils.parallel_combine_variants(
             files, self.combo_file, self.ref_file, config, run_parallel)
     for fname in files:
         if os.path.exists(fname + ".gz"):
             subprocess.check_call(["gunzip", fname + ".gz"])
         if os.path.exists(fname + ".gz.tbi"):
             os.remove(fname + ".gz.tbi")
예제 #16
0
 def run(self, config, config_file, parallel, dirs, samples):
     ## Alignment and preparation requiring the entire input file (multicore cluster)
     with prun.start(_wres(parallel, ["aligner"]),
                     samples, config, dirs, "multicore") as run_parallel:
         with profile.report("alignment", dirs):
             samples = run_parallel("process_alignment", samples)
         with profile.report("callable regions", dirs):
             samples = run_parallel("postprocess_alignment", samples)
             samples = run_parallel("combine_sample_regions", [samples])
             samples = region.clean_sample_data(samples)
     ## Quality control
     with prun.start(_wres(parallel, ["fastqc", "bamtools", "samtools"]),
                     samples, config, dirs, "multicore2") as run_parallel:
         with profile.report("quality control", dirs):
             samples = qcsummary.generate_parallel(samples, run_parallel)
     logger.info("Timing: finished")
     return samples
예제 #17
0
    def run(self, config, run_info_yaml, parallel, dirs, samples):
        # causes a circular import at the top level
        from bcbio.srna.group import report as srna_report

        with prun.start(_wres(parallel, ["picard", "cutadapt"]),
                        samples, config, dirs, "trimming") as run_parallel:
            with profile.report("organize samples", dirs):
                samples = run_parallel("organize_samples", [[dirs, config, run_info_yaml,
                                                             [x[0]["description"] for x in samples]]])
            with profile.report("adapter trimming", dirs):
                samples = run_parallel("prepare_sample", samples)
                samples = run_parallel("trim_srna_sample", samples)

        with prun.start(_wres(parallel, ["aligner", "picard", "samtools"],
                              ensure_mem={"bowtie": 8, "bowtie2": 8, "star": 2}),
                        [samples[0]], config, dirs, "alignment") as run_parallel:
            with profile.report("prepare", dirs):
                samples = run_parallel("seqcluster_prepare", [samples])
            with profile.report("alignment", dirs):
                samples = run_parallel("srna_alignment", [samples])

        with prun.start(_wres(parallel, ["picard", "miraligner"]),
                        samples, config, dirs, "annotation") as run_parallel:
            with profile.report("small RNA annotation", dirs):
                samples = run_parallel("srna_annotation", samples)

        with prun.start(_wres(parallel, ["seqcluster"],
                              ensure_mem={"seqcluster": 8}),
                        [samples[0]], config, dirs, "cluster") as run_parallel:
            with profile.report("cluster", dirs):
                samples = run_parallel("seqcluster_cluster", [samples])

        with prun.start(_wres(parallel, ["picard", "fastqc"]),
                        samples, config, dirs, "qc") as run_parallel:
            with profile.report("quality control", dirs):
                samples = qcsummary.generate_parallel(samples, run_parallel)
            with profile.report("report", dirs):
                srna_report(samples)
            with profile.report("upload", dirs):
                samples = run_parallel("upload_samples", samples)
                for sample in samples:
                    run_parallel("upload_samples_project", [sample])

        return samples
예제 #18
0
def smallrnaseqpipeline(config, run_info_yaml, parallel, dirs, samples):
    # causes a circular import at the top level
    from bcbio.srna.group import report as srna_report

    samples = rnaseq_prep_samples(config, run_info_yaml, parallel, dirs, samples)

    with prun.start(_wres(parallel, ["aligner", "picard", "samtools"],
                          ensure_mem={"bowtie": 8, "bowtie2": 8, "star": 2}),
                    [samples[0]], config, dirs, "alignment") as run_parallel:
        with profile.report("prepare", dirs):
            samples = run_parallel("seqcluster_prepare", [samples])
        with profile.report("seqcluster alignment", dirs):
            samples = run_parallel("srna_alignment", [samples])

    with prun.start(_wres(parallel, ["aligner", "picard", "samtools"],
                            ensure_mem={"tophat": 10, "tophat2": 10, "star": 2, "hisat2": 8}),
                    samples, config, dirs, "alignment_samples",
                    multiplier=alignprep.parallel_multiplier(samples)) as run_parallel:
        with profile.report("alignment", dirs):
            samples = run_parallel("process_alignment", samples)

    with prun.start(_wres(parallel, ["picard", "miraligner"]),
                    samples, config, dirs, "annotation") as run_parallel:
        with profile.report("small RNA annotation", dirs):
            samples = run_parallel("srna_annotation", samples)

    with prun.start(_wres(parallel, ["seqcluster", "mirge"],
                          ensure_mem={"seqcluster": 8}),
                    [samples[0]], config, dirs, "cluster") as run_parallel:
        with profile.report("cluster", dirs):
            samples = run_parallel("seqcluster_cluster", [samples])

    with prun.start(_wres(parallel, ["picard", "fastqc"]),
                    samples, config, dirs, "qc") as run_parallel:
        with profile.report("quality control", dirs):
            samples = qcsummary.generate_parallel(samples, run_parallel)
        with profile.report("report", dirs):
            srna_report(samples)
        with profile.report("upload", dirs):
            samples = run_parallel("upload_samples", samples)
            for sample in samples:
                run_parallel("upload_samples_project", [sample])

    return samples
예제 #19
0
파일: lane.py 프로젝트: roryk/bcbio-nextgen
def process_all_lanes(lanes, parallel, dirs, config):
    """Process all input lanes, avoiding starting a cluster if not needed.
    """
    lanes = list(lanes)
    if _item_needs_compute(lanes):
        with prun.start(_wprogs(parallel, ["picard"]),
                        lanes, config, dirs, "laneprocess") as run_parallel:
            return run_parallel("process_lane", [[x] for x in lanes])
    else:
        return [process_lane(x)[0] for x in lanes]
예제 #20
0
def rnaseqpipeline(config, run_info_yaml, parallel, dirs, samples):
    samples = rnaseq_prep_samples(config, run_info_yaml, parallel, dirs, samples)
    with prun.start(_wres(parallel, ["aligner", "picard", "samtools"],
                            ensure_mem={"tophat": 10, "tophat2": 10, "star": 2, "hisat2": 8}),
                    samples, config, dirs, "alignment",
                    multiplier=alignprep.parallel_multiplier(samples)) as run_parallel:
        with profile.report("alignment", dirs):
            samples = run_parallel("disambiguate_split", [samples])
            samples = run_parallel("process_alignment", samples)
    with prun.start(_wres(parallel, ["samtools", "cufflinks"]),
                    samples, config, dirs, "rnaseqcount") as run_parallel:
        with profile.report("disambiguation", dirs):
            samples = disambiguate.resolve(samples, run_parallel)
        with profile.report("transcript assembly", dirs):
            samples = rnaseq.assemble_transcripts(run_parallel, samples)
        with profile.report("estimate expression (threaded)", dirs):
            samples = rnaseq.quantitate_expression_parallel(samples, run_parallel)

    with prun.start(_wres(parallel, ["dexseq", "express"]), samples, config,
                    dirs, "rnaseqcount-singlethread", max_multicore=1) as run_parallel:
        with profile.report("estimate expression (single threaded)", dirs):
            samples = rnaseq.quantitate_expression_noparallel(samples, run_parallel)

    samples = rnaseq.combine_files(samples)
    with prun.start(_wres(parallel, ["gatk", "vardict"]), samples, config,
                    dirs, "rnaseq-variation") as run_parallel:
        with profile.report("RNA-seq variant calling", dirs):
            samples = rnaseq.rnaseq_variant_calling(samples, run_parallel)

    with prun.start(_wres(parallel, ["samtools", "fastqc", "qualimap",
                                     "kraken", "gatk", "preseq"], ensure_mem={"qualimap": 4}),
                    samples, config, dirs, "qc") as run_parallel:
        with profile.report("quality control", dirs):
            samples = qcsummary.generate_parallel(samples, run_parallel)
        with profile.report("upload", dirs):
            samples = run_parallel("upload_samples", samples)
            for sample in samples:
                run_parallel("upload_samples_project", [sample])
        with profile.report("bcbioRNAseq loading", dirs):
            run_parallel("run_bcbiornaseqload", [sample])
    logger.info("Timing: finished")
    return samples
예제 #21
0
def fastrnaseqpipeline(config, run_info_yaml, parallel, dirs, samples):
    samples = rnaseq_prep_samples(config, run_info_yaml, parallel, dirs, samples)
    with prun.start(_wres(parallel, ["samtools"]), samples, config,
                    dirs, "fastrnaseq") as run_parallel:
        with profile.report("fastrnaseq", dirs):
            samples = rnaseq.fast_rnaseq(samples, run_parallel)
        with profile.report("upload", dirs):
            samples = run_parallel("upload_samples", samples)
            for samples in samples:
                run_parallel("upload_samples_project", [samples])
    logger.info("Timing: finished")
    return samples
예제 #22
0
def parallel_callable_loci(in_bam, ref_file, data):
    config = copy.deepcopy(data["config"])
    num_cores = config["algorithm"].get("num_cores", 1)
    data = {"work_bam": in_bam, "config": config, "reference": data["reference"]}
    parallel = {"type": "local", "cores": num_cores, "module": "bcbio.distributed"}
    items = [[data]]
    with prun.start(parallel, items, config, multiplier=int(num_cores)) as runner:
        split_fn = shared.process_bam_by_chromosome("-callable.bed", "work_bam", remove_alts=True)
        out = parallel_split_combine(
            items, split_fn, runner, "calc_callable_loci", "combine_bed", "callable_bed", ["config"]
        )[0]
    return out[0]["callable_bed"]
예제 #23
0
def parallel_callable_loci(in_bam, ref_file, config):
    num_cores = config["algorithm"].get("num_cores", 1)
    config = copy.deepcopy(config)
    config["algorithm"]["memory_adjust"] = {"direction": "decrease", "magnitude": 2}
    data = {"work_bam": in_bam, "sam_ref": ref_file, "config": config}
    parallel = {"type": "local", "cores": num_cores, "module": "bcbio.distributed"}
    items = [[data]]
    with prun.start(parallel, items, config) as runner:
        split_fn = shared.process_bam_by_chromosome("-callable.bed", "work_bam")
        out = parallel_split_combine(
            items, split_fn, runner, "calc_callable_loci", "combine_bed", "callable_bed", ["config"]
        )[0]
    return out[0]["callable_bed"]
예제 #24
0
def singlecellrnaseqpipeline(config, run_info_yaml, parallel, dirs, samples):
    samples = rnaseq_prep_samples(config, run_info_yaml, parallel, dirs, samples)
    with prun.start(_wres(parallel, ["samtools", "rapmap"]), samples, config,
                    dirs, "singlecell-rnaseq") as run_parallel:
        with profile.report("singlecell-rnaseq", dirs):
            samples = rnaseq.singlecell_rnaseq(samples, run_parallel)
        with profile.report("quality control", dirs):
            samples = qcsummary.generate_parallel(samples, run_parallel)
        with profile.report("upload", dirs):
            samples = run_parallel("upload_samples", samples)
            for samples in samples:
                run_parallel("upload_samples_project", [samples])
    logger.info("Timing: finished")
    return samples
예제 #25
0
def fastrnaseqpipeline(config, run_info_yaml, parallel, dirs, samples):
    samples = rnaseq_prep_samples(config, run_info_yaml, parallel, dirs, samples)
    ww = initialize_watcher(samples)
    with prun.start(_wres(parallel, ["samtools"]), samples, config,
                    dirs, "fastrnaseq") as run_parallel:
        with profile.report("fastrnaseq", dirs):
            samples = rnaseq.fast_rnaseq(samples, run_parallel)
            ww.report("fastrnaseq", samples)
        with profile.report("quality control", dirs):
            samples = qcsummary.generate_parallel(samples, run_parallel)
            ww.report("qcsummary", samples)
        with profile.report("upload", dirs):
            samples = run_parallel("upload_samples", samples)
            for samples in samples:
                run_parallel("upload_samples_project", [samples])
    logger.info("Timing: finished")
    return samples
예제 #26
0
파일: main.py 프로젝트: Kisun/bcbio-nextgen
    def run(self, config, run_info_yaml, parallel, dirs, samples):
        with prun.start(_wres(parallel, ["picard", "cutadapt"]), samples, config, dirs, "trimming") as run_parallel:
            with profile.report("organize samples", dirs):
                samples = run_parallel(
                    "organize_samples", [[dirs, config, run_info_yaml, [x[0]["description"] for x in samples]]]
                )
            with profile.report("adapter trimming", dirs):
                samples = run_parallel("prepare_sample", samples)
                samples = run_parallel("trim_sample", samples)
        with prun.start(
            _wres(parallel, ["aligner", "picard"], ensure_mem={"tophat": 8, "tophat2": 8, "star": 2}),
            samples,
            config,
            dirs,
            "alignment",
            multiplier=alignprep.parallel_multiplier(samples),
        ) as run_parallel:
            with profile.report("alignment", dirs):
                samples = run_parallel("disambiguate_split", [samples])
                samples = run_parallel("process_alignment", samples)
        with prun.start(
            _wres(parallel, ["samtools", "cufflinks"]), samples, config, dirs, "rnaseqcount"
        ) as run_parallel:
            with profile.report("disambiguation", dirs):
                samples = disambiguate.resolve(samples, run_parallel)
            with profile.report("transcript assembly", dirs):
                samples = rnaseq.assemble_transcripts(run_parallel, samples)
            with profile.report("estimate expression (threaded)", dirs):
                samples = rnaseq.quantitate_expression_parallel(samples, run_parallel)
        with prun.start(
            _wres(parallel, ["dexseq", "express"]), samples, config, dirs, "rnaseqcount-singlethread", max_multicore=1
        ) as run_parallel:
            with profile.report("estimate expression (single threaded)", dirs):
                samples = rnaseq.quantitate_expression_noparallel(samples, run_parallel)
        samples = rnaseq.combine_files(samples)
        with prun.start(_wres(parallel, ["gatk"]), samples, config, dirs, "rnaseq-variation") as run_parallel:
            with profile.report("RNA-seq variant calling", dirs):
                samples = rnaseq.rnaseq_variant_calling(samples, run_parallel)

        with prun.start(
            _wres(parallel, ["picard", "fastqc", "rnaseqc", "kraken"]), samples, config, dirs, "qc"
        ) as run_parallel:
            with profile.report("quality control", dirs):
                samples = qcsummary.generate_parallel(samples, run_parallel)
            with profile.report("upload", dirs):
                for sample in samples:
                    run_parallel("upload_samples", [sample])
        logger.info("Timing: finished")
        return samples
예제 #27
0
 def test_1_parallel_vcf_combine(self):
     """Parallel combination of VCF files, split by chromosome.
     """
     # Be back compatible with 0.7.6 -- remove after 0.7.7 release
     if prun is None:
         return
     files = [os.path.join(self.var_dir, "S1-variants.vcf"), os.path.join(self.var_dir, "S2-variants.vcf")]
     ref_file = os.path.join(self.data_dir, "genomes", "hg19", "seq", "hg19.fa")
     config = load_config(os.path.join(self.data_dir, "automated",
                                       "post_process-sample.yaml"))
     region_dir = os.path.join(self.var_dir, "S1_S2-combined-regions")
     if os.path.exists(region_dir):
         shutil.rmtree(region_dir)
     if os.path.exists(self.combo_file):
         os.remove(self.combo_file)
     with prun.start({"type": "local", "cores": 1}, [[config]], config) as run_parallel:
         vcfutils.parallel_combine_variants(files, self.combo_file, ref_file, config, run_parallel)
     for fname in files:
         if os.path.exists(fname + ".gz"):
             subprocess.check_call(["gunzip", fname + ".gz"])
         if os.path.exists(fname + ".gz.tbi"):
             os.remove(fname + ".gz.tbi")
예제 #28
0
def _get_machine_info(parallel, sys_config, dirs, config):
    """Get machine resource information from the job scheduler via either the command line or the queue.
    """
    if parallel.get("queue") and parallel.get("scheduler"):
        # dictionary as switch statement; can add new scheduler implementation functions as (lowercase) keys
        sched_info_dict = {
                            "slurm": _slurm_info,
                            "torque": _torque_info,
                            "sge": _sge_info
                          }
        try:
            return sched_info_dict[parallel["scheduler"].lower()](parallel["queue"])
        except KeyError:
            logger.info("Resource query function not implemented for scheduler \"{0}\"; "
                         "submitting job to queue".format(parallel["scheduler"]))
        except:
            # If something goes wrong, just hit the queue
            logger.warn("Couldn't get machine information from resource query function for queue "
                        "'{0}' on scheduler \"{1}\"; "
                         "submitting job to queue".format(parallel["queue"], parallel["scheduler"]))
    from bcbio.distributed import prun
    with prun.start(parallel, [[sys_config]], config, dirs) as run_parallel:
        return run_parallel("machine_info", [[sys_config]])
예제 #29
0
def rnaseqpipeline(config, run_info_yaml, parallel, dirs, samples):
    samples = rnaseq_prep_samples(config, run_info_yaml, parallel, dirs,
                                  samples)
    with prun.start(
            _wres(parallel, ["aligner", "picard", "samtools"],
                  ensure_mem={
                      "tophat": 10,
                      "tophat2": 10,
                      "star": 2,
                      "hisat2": 8
                  }),
            samples,
            config,
            dirs,
            "alignment",
            multiplier=alignprep.parallel_multiplier(samples)) as run_parallel:
        with profile.report("alignment", dirs):
            samples = run_parallel("disambiguate_split", [samples])
            samples = run_parallel("process_alignment", samples)
    with prun.start(_wres(parallel, ["samtools", "cufflinks"]), samples,
                    config, dirs, "rnaseqcount") as run_parallel:
        with profile.report("disambiguation", dirs):
            samples = disambiguate.resolve(samples, run_parallel)
        with profile.report("transcript assembly", dirs):
            samples = rnaseq.assemble_transcripts(run_parallel, samples)
        with profile.report("estimate expression (threaded)", dirs):
            samples = rnaseq.quantitate_expression_parallel(
                samples, run_parallel)

    with prun.start(_wres(parallel, ["dexseq", "express"]),
                    samples,
                    config,
                    dirs,
                    "rnaseqcount-singlethread",
                    max_multicore=1) as run_parallel:
        with profile.report("estimate expression (single threaded)", dirs):
            samples = rnaseq.quantitate_expression_noparallel(
                samples, run_parallel)

    samples = rnaseq.combine_files(samples)
    with prun.start(_wres(parallel, ["gatk", "vardict"]), samples, config,
                    dirs, "rnaseq-variation") as run_parallel:
        with profile.report("RNA-seq variant calling", dirs):
            samples = rnaseq.rnaseq_variant_calling(samples, run_parallel)

    with prun.start(
            _wres(
                parallel,
                ["samtools", "fastqc", "qualimap", "kraken", "gatk", "preseq"],
                ensure_mem={"qualimap": 4}), samples, config, dirs,
            "qc") as run_parallel:
        with profile.report("quality control", dirs):
            samples = qcsummary.generate_parallel(samples, run_parallel)
        with profile.report("upload", dirs):
            samples = run_parallel("upload_samples", samples)
            for sample in samples:
                run_parallel("upload_samples_project", [sample])
        with profile.report("bcbioRNAseq loading", dirs):
            run_parallel("run_bcbiornaseqload", [sample])
    logger.info("Timing: finished")
    return samples
예제 #30
0
    def run(self, config, run_info_yaml, parallel, dirs, samples):
        ## Alignment and preparation requiring the entire input file (multicore cluster)
        with prun.start(_wres(parallel, ["aligner", "samtools", "sambamba"],
                              (["reference", "fasta"], ["reference", "aligner"], ["files"])),
                        samples, config, dirs, "multicore",
                        multiplier=alignprep.parallel_multiplier(samples)) as run_parallel:
            with profile.report("organize samples", dirs):
                samples = run_parallel("organize_samples", [[dirs, config, run_info_yaml,
                                                             [x[0]["description"] for x in samples]]])
            with profile.report("alignment preparation", dirs):
                samples = run_parallel("prep_align_inputs", samples)
                samples = disambiguate.split(samples)
            with profile.report("alignment", dirs):
                samples = run_parallel("process_alignment", samples)
                samples = alignprep.merge_split_alignments(samples, run_parallel)
                samples = disambiguate.resolve(samples, run_parallel)
            with profile.report("callable regions", dirs):
                samples = run_parallel("prep_samples", [samples])
                samples = run_parallel("postprocess_alignment", samples)
                samples = run_parallel("combine_sample_regions", [samples])
                samples = region.clean_sample_data(samples)
            with profile.report("coverage", dirs):
                samples = coverage.summarize_samples(samples, run_parallel)

        ## Variant calling on sub-regions of the input file (full cluster)
        with prun.start(_wres(parallel, ["gatk", "picard", "variantcaller"]),
                        samples, config, dirs, "full",
                        multiplier=region.get_max_counts(samples), max_multicore=1) as run_parallel:
            with profile.report("alignment post-processing", dirs):
                samples = region.parallel_prep_region(samples, run_parallel)
            with profile.report("variant calling", dirs):
                samples = genotype.parallel_variantcall_region(samples, run_parallel)

        ## Finalize variants, BAMs and population databases (per-sample multicore cluster)
        with prun.start(_wres(parallel, ["gatk", "gatk-vqsr", "snpeff", "bcbio_variation",
                                         "gemini", "samtools", "fastqc", "bamtools",
                                         "bcbio-variation-recall", "qsignature"]),
                        samples, config, dirs, "multicore2") as run_parallel:
            with profile.report("joint squaring off/backfilling", dirs):
                samples = joint.square_off(samples, run_parallel)
            with profile.report("variant post-processing", dirs):
                samples = run_parallel("postprocess_variants", samples)
                samples = run_parallel("split_variants_by_sample", samples)
            with profile.report("prepped BAM merging", dirs):
                samples = region.delayed_bamprep_merge(samples, run_parallel)
            with profile.report("validation", dirs):
                samples = run_parallel("compare_to_rm", samples)
                samples = genotype.combine_multiple_callers(samples)
            with profile.report("ensemble calling", dirs):
                samples = ensemble.combine_calls_parallel(samples, run_parallel)
            with profile.report("validation summary", dirs):
                samples = validate.summarize_grading(samples)
            with profile.report("structural variation", dirs):
                samples = structural.run(samples, run_parallel)
            with profile.report("population database", dirs):
                samples = population.prep_db_parallel(samples, run_parallel)
            with profile.report("quality control", dirs):
                samples = qcsummary.generate_parallel(samples, run_parallel)
            with profile.report("archive", dirs):
                samples = archive.compress(samples, run_parallel)
        logger.info("Timing: finished")
        return samples
예제 #31
0
파일: main.py 프로젝트: xlec/bcbio-nextgen
def variant2pipeline(config, run_info_yaml, parallel, dirs, samples):
    ## Alignment and preparation requiring the entire input file (multicore cluster)
    # Assign GATK supplied memory if required for post-process recalibration
    align_programs = ["aligner", "samtools", "sambamba"]
    if any(tz.get_in(["algorithm", "recalibrate"], utils.to_single_data(d)) in [True, "gatk"] for d in samples):
        align_programs.append("gatk")
    with prun.start(_wres(parallel, align_programs,
                            (["reference", "fasta"], ["reference", "aligner"], ["files"])),
                    samples, config, dirs, "multicore",
                    multiplier=alignprep.parallel_multiplier(samples)) as run_parallel:
        with profile.report("organize samples", dirs):
            samples = run_parallel("organize_samples", [[dirs, config, run_info_yaml,
                                                            [x[0]["description"] for x in samples]]])
        with profile.report("alignment preparation", dirs):
            samples = run_parallel("prep_align_inputs", samples)
            samples = run_parallel("disambiguate_split", [samples])
        with profile.report("alignment", dirs):
            samples = run_parallel("process_alignment", samples)
            samples = disambiguate.resolve(samples, run_parallel)
            samples = alignprep.merge_split_alignments(samples, run_parallel)
        with profile.report("callable regions", dirs):
            samples = run_parallel("prep_samples", [samples])
            samples = run_parallel("postprocess_alignment", samples)
            samples = run_parallel("combine_sample_regions", [samples])
            samples = run_parallel("calculate_sv_bins", [samples])
            samples = run_parallel("calculate_sv_coverage", samples)
            samples = run_parallel("normalize_sv_coverage", [samples])
            samples = region.clean_sample_data(samples)
        with profile.report("hla typing", dirs):
            samples = hla.run(samples, run_parallel)

    ## Variant calling on sub-regions of the input file (full cluster)
    with prun.start(_wres(parallel, ["gatk", "picard", "variantcaller"]),
                    samples, config, dirs, "full",
                    multiplier=region.get_max_counts(samples), max_multicore=1) as run_parallel:
        with profile.report("alignment post-processing", dirs):
            samples = region.parallel_prep_region(samples, run_parallel)
        with profile.report("variant calling", dirs):
            samples = genotype.parallel_variantcall_region(samples, run_parallel)

    ## Finalize variants, BAMs and population databases (per-sample multicore cluster)
    with prun.start(_wres(parallel, ["gatk", "gatk-vqsr", "snpeff", "bcbio_variation",
                                     "gemini", "samtools", "fastqc", "sambamba",
                                     "bcbio-variation-recall", "qsignature",
                                     "svcaller", "kraken", "preseq"]),
                    samples, config, dirs, "multicore2",
                    multiplier=structural.parallel_multiplier(samples)) as run_parallel:
        with profile.report("joint squaring off/backfilling", dirs):
            samples = joint.square_off(samples, run_parallel)
        with profile.report("variant post-processing", dirs):
            samples = run_parallel("postprocess_variants", samples)
            samples = run_parallel("split_variants_by_sample", samples)
        with profile.report("prepped BAM merging", dirs):
            samples = region.delayed_bamprep_merge(samples, run_parallel)
        with profile.report("validation", dirs):
            samples = run_parallel("compare_to_rm", samples)
            samples = genotype.combine_multiple_callers(samples)
        with profile.report("ensemble calling", dirs):
            samples = ensemble.combine_calls_parallel(samples, run_parallel)
        with profile.report("validation summary", dirs):
            samples = validate.summarize_grading(samples)
        with profile.report("structural variation", dirs):
            samples = structural.run(samples, run_parallel, "initial")
        with profile.report("structural variation", dirs):
            samples = structural.run(samples, run_parallel, "standard")
        with profile.report("structural variation ensemble", dirs):
            samples = structural.run(samples, run_parallel, "ensemble")
        with profile.report("structural variation validation", dirs):
            samples = run_parallel("validate_sv", samples)
        with profile.report("heterogeneity", dirs):
            samples = heterogeneity.run(samples, run_parallel)
        with profile.report("population database", dirs):
            samples = population.prep_db_parallel(samples, run_parallel)
        with profile.report("peddy check", dirs):
            samples = peddy.run_peddy_parallel(samples, run_parallel)
        with profile.report("quality control", dirs):
            samples = qcsummary.generate_parallel(samples, run_parallel)
        with profile.report("archive", dirs):
            samples = archive.compress(samples, run_parallel)
        with profile.report("upload", dirs):
            samples = run_parallel("upload_samples", samples)
            for sample in samples:
                run_parallel("upload_samples_project", [sample])
    logger.info("Timing: finished")
    return samples
예제 #32
0
    parser.add_argument("-p", "--tag", help="Tag name to label jobs on the cluster", default="bcb-prep")
    parser.add_argument("-t", "--paralleltype",
                        choices=["local", "ipython"],
                        default="local", help="Run with iptyhon")

    args = parser.parse_args()
    out_dir = os.path.abspath(args.out)
    utils.safe_makedir(out_dir)
    system_config = os.path.join(_get_data_dir(), "galaxy", "bcbio_system.yaml")
    with open(system_config) as in_handle:
        config = yaml.load(in_handle)
        res = {'cores': args.cores_per_job}
        config["algorithm"] = {"num_cores": args.cores_per_job}
        config["resources"].update({'sambamba': res,
                                    'samtools': res})
    parallel = clargs.to_parallel(args)
    parallel.update({'progs': ['samtools', 'sambamba']})
    parallel = log.create_base_logger(config, parallel)
    log.setup_local_logging(config, parallel)
    dirs = {'work': os.path.abspath(os.getcwd())}
    system.write_info(dirs, parallel, config)
    sysinfo = system.machine_info()[0]
    samples = _get_samples_to_process(args.csv, out_dir, config)
    parallel = resources.calculate(parallel, [samples], sysinfo, config)

    with prun.start(parallel, samples, config, dirs) as run_parallel:
        with profile.report("prepare bcbio samples", dirs):
            samples = run_parallel("prepare_bcbio_samples", samples)

    create_new_csv(samples, args)
예제 #33
0
    parser.add_argument("-t", "--paralleltype",
                        choices=["local", "ipython"],
                        default="local", help="Run with iptyhon")

    args = parser.parse_args()
    out_dir = os.path.abspath(args.out)
    utils.safe_makedir(out_dir)
    system_config = os.path.join(_get_data_dir(), "galaxy", "bcbio_system.yaml")
    with open(system_config) as in_handle:
        config = yaml.load(in_handle)
        res = {'cores': args.cores_per_job}
        config["algorithm"] = {"num_cores": args.cores_per_job}
        config["resources"].update({'sambamba': res,
                                    'samtools': res})
        config["log_dir"] = os.path.join(os.path.abspath(os.getcwd()), "log")
    parallel = clargs.to_parallel(args)
    parallel.update({'progs': ['samtools', 'sambamba']})
    parallel = log.create_base_logger(config, parallel)
    log.setup_local_logging(config, parallel)
    dirs = {'work': os.path.abspath(os.getcwd())}
    system.write_info(dirs, parallel, config)
    sysinfo = system.machine_info()[0]
    samples = _get_samples_to_process(args.csv, out_dir, config)
    parallel = resources.calculate(parallel, [samples], sysinfo, config)

    with prun.start(parallel, samples, config, dirs) as run_parallel:
        with profile.report("prepare bcbio samples", dirs):
            samples = run_parallel("prepare_bcbio_samples", samples)

    create_new_csv(samples, args)
예제 #34
0
    def run(self, config, config_file, parallel, dirs, samples):
        ## Alignment and preparation requiring the entire input file (multicore cluster)
        with prun.start(_wres(
                parallel, ["aligner", "gatk"],
            (["reference", "fasta"], ["reference", "aligner"], ["files"])),
                        samples,
                        config,
                        dirs,
                        "multicore",
                        multiplier=alignprep.parallel_multiplier(
                            samples)) as run_parallel:
            logger.info("Timing: alignment")
            samples = run_parallel("prep_align_inputs", samples)
            samples = disambiguate.split(samples)
            samples = run_parallel("process_alignment", samples)
            samples = alignprep.merge_split_alignments(samples, run_parallel)
            samples = disambiguate.resolve(samples, run_parallel)
            samples = run_parallel("postprocess_alignment", samples)
            regions = callable.combine_sample_regions(samples)
            samples = region.add_region_info(samples, regions)
            samples = region.clean_sample_data(samples)
            logger.info("Timing: coverage")
            samples = coverage.summarize_samples(samples, run_parallel)

        ## Variant calling on sub-regions of the input file (full cluster)
        with prun.start(_wres(parallel, ["gatk", "picard", "variantcaller"]),
                        samples,
                        config,
                        dirs,
                        "full",
                        multiplier=len(regions["analysis"]),
                        max_multicore=1) as run_parallel:
            logger.info("Timing: alignment post-processing")
            samples = region.parallel_prep_region(samples, regions,
                                                  run_parallel)
            logger.info("Timing: variant calling")
            samples = region.parallel_variantcall_region(samples, run_parallel)

        ## Finalize variants (per-sample cluster)
        with prun.start(
                _wres(parallel,
                      ["gatk", "gatk-vqsr", "snpeff", "bcbio_variation"]),
                samples, config, dirs, "persample") as run_parallel:
            logger.info("Timing: variant post-processing")
            samples = run_parallel("postprocess_variants", samples)
            logger.info("Timing: validation")
            samples = run_parallel("compare_to_rm", samples)
            samples = combine_multiple_callers(samples)
        ## Finalizing BAMs and population databases, handle multicore computation
        with prun.start(
                _wres(parallel, [
                    "gemini", "samtools", "fastqc", "bamtools",
                    "bcbio_variation", "bcbio-variation-recall"
                ]), samples, config, dirs, "multicore2") as run_parallel:
            logger.info("Timing: prepped BAM merging")
            samples = region.delayed_bamprep_merge(samples, run_parallel)
            logger.info("Timing: ensemble calling")
            samples = ensemble.combine_calls_parallel(samples, run_parallel)
            samples = validate.summarize_grading(samples)
            logger.info("Timing: structural variation")
            samples = structural.run(samples, run_parallel)
            logger.info("Timing: population database")
            samples = population.prep_db_parallel(samples, run_parallel)
            logger.info("Timing: quality control")
            samples = qcsummary.generate_parallel(samples, run_parallel)
        logger.info("Timing: finished")
        return samples
예제 #35
0
def variant2pipeline(config, run_info_yaml, parallel, dirs, samples):
    ## Alignment and preparation requiring the entire input file (multicore cluster)
    with prun.start(_wres(parallel, ["aligner", "samtools", "sambamba"],
                            (["reference", "fasta"], ["reference", "aligner"], ["files"])),
                    samples, config, dirs, "multicore",
                    multiplier=alignprep.parallel_multiplier(samples)) as run_parallel:
        with profile.report("organize samples", dirs):
            samples = run_parallel("organize_samples", [[dirs, config, run_info_yaml,
                                                            [x[0]["description"] for x in samples]]])
        ww = WorldWatcher(dirs["work"], is_on=any([dd.get_cwl_reporting(d[0]) for d in samples]))
        ww.initialize(samples)
        with profile.report("alignment preparation", dirs):
            samples = run_parallel("prep_align_inputs", samples)
            ww.report("prep_align_inputs", samples)
            samples = run_parallel("disambiguate_split", [samples])
        with profile.report("alignment", dirs):
            samples = run_parallel("process_alignment", samples)
            ww.report("process_alignment", samples)
            samples = disambiguate.resolve(samples, run_parallel)
            samples = alignprep.merge_split_alignments(samples, run_parallel)
        with profile.report("callable regions", dirs):
            samples = run_parallel("prep_samples", [samples])
            ww.report("prep_samples", samples)
            samples = run_parallel("postprocess_alignment", samples)
            ww.report("postprocess_alignment", samples)
            samples = run_parallel("combine_sample_regions", [samples])
            samples = region.clean_sample_data(samples)
            ww.report("combine_sample_regions", samples)
        with profile.report("structural variation initial", dirs):
            samples = structural.run(samples, run_parallel, "initial")
            ww.report("sv_initial", samples)
        with profile.report("hla typing", dirs):
            samples = hla.run(samples, run_parallel)
            ww.report("call_hla", samples)

    ## Variant calling on sub-regions of the input file (full cluster)
    with prun.start(_wres(parallel, ["gatk", "picard", "variantcaller"]),
                    samples, config, dirs, "full",
                    multiplier=region.get_max_counts(samples), max_multicore=1) as run_parallel:
        with profile.report("alignment post-processing", dirs):
            samples = region.parallel_prep_region(samples, run_parallel)
        with profile.report("variant calling", dirs):
            samples = genotype.parallel_variantcall_region(samples, run_parallel)

    ## Finalize variants, BAMs and population databases (per-sample multicore cluster)
    with prun.start(_wres(parallel, ["gatk", "gatk-vqsr", "snpeff", "bcbio_variation",
                                     "gemini", "samtools", "fastqc", "bamtools",
                                     "bcbio-variation-recall", "qsignature",
                                     "svcaller"]),
                    samples, config, dirs, "multicore2",
                    multiplier=structural.parallel_multiplier(samples)) as run_parallel:
        with profile.report("joint squaring off/backfilling", dirs):
            samples = joint.square_off(samples, run_parallel)
        with profile.report("variant post-processing", dirs):
            samples = run_parallel("postprocess_variants", samples)
            samples = run_parallel("split_variants_by_sample", samples)
        with profile.report("prepped BAM merging", dirs):
            samples = region.delayed_bamprep_merge(samples, run_parallel)
        with profile.report("validation", dirs):
            samples = run_parallel("compare_to_rm", samples)
            samples = genotype.combine_multiple_callers(samples)
        with profile.report("ensemble calling", dirs):
            samples = ensemble.combine_calls_parallel(samples, run_parallel)
        with profile.report("validation summary", dirs):
            samples = validate.summarize_grading(samples)
        with profile.report("structural variation final", dirs):
            samples = structural.run(samples, run_parallel, "standard")
        with profile.report("structural variation ensemble", dirs):
            samples = structural.run(samples, run_parallel, "ensemble")
        with profile.report("structural variation validation", dirs):
            samples = run_parallel("validate_sv", samples)
        with profile.report("heterogeneity", dirs):
            samples = heterogeneity.run(samples, run_parallel)
        with profile.report("population database", dirs):
            samples = population.prep_db_parallel(samples, run_parallel)
        with profile.report("quality control", dirs):
            ww.report("pre_qc", samples)
            samples = qcsummary.generate_parallel(samples, run_parallel)
            ww.report("qc_summary", samples)
        with profile.report("archive", dirs):
            samples = archive.compress(samples, run_parallel)
        with profile.report("upload", dirs):
            samples = run_parallel("upload_samples", samples)
            for sample in samples:
                run_parallel("upload_samples_project", [sample])
    logger.info("Timing: finished")
    return samples