def combine_files(samples): """ after quantitation, combine the counts/FPKM/TPM/etc into a single table with all samples """ gtf_file = dd.get_gtf_file(samples[0][0], None) dexseq_gff = dd.get_dexseq_gff(samples[0][0]) # combine featureCount files count_files = filter_missing([dd.get_count_file(x[0]) for x in samples]) combined = count.combine_count_files(count_files, ext=".counts") annotated = count.annotate_combined_count_file(combined, gtf_file) # combine eXpress files express_counts_combined = combine_express(samples, combined) # combine Cufflinks files fpkm_combined_file = os.path.splitext(combined)[0] + ".fpkm" fpkm_files = filter_missing([dd.get_fpkm(x[0]) for x in samples]) if fpkm_files: fpkm_combined = count.combine_count_files(fpkm_files, fpkm_combined_file) else: fpkm_combined = None fpkm_isoform_combined_file = os.path.splitext(combined)[0] + ".isoform.fpkm" isoform_files = filter_missing([dd.get_fpkm_isoform(x[0]) for x in samples]) if isoform_files: fpkm_isoform_combined = count.combine_count_files(isoform_files, fpkm_isoform_combined_file, ".isoform.fpkm") else: fpkm_isoform_combined = None # combine DEXseq files dexseq_combined_file = os.path.splitext(combined)[0] + ".dexseq" to_combine_dexseq = filter_missing([dd.get_dexseq_counts(data[0]) for data in samples]) if to_combine_dexseq: dexseq_combined = count.combine_count_files(to_combine_dexseq, dexseq_combined_file, ".dexseq") dexseq.create_dexseq_annotation(dexseq_gff, dexseq_combined) else: dexseq_combined = None samples = spikein.combine_spikein(samples) updated_samples = [] for data in dd.sample_data_iterator(samples): data = dd.set_combined_counts(data, combined) if annotated: data = dd.set_annotated_combined_counts(data, annotated) if fpkm_combined: data = dd.set_combined_fpkm(data, fpkm_combined) if fpkm_isoform_combined: data = dd.set_combined_fpkm_isoform(data, fpkm_isoform_combined) if express_counts_combined: data = dd.set_express_counts(data, express_counts_combined['counts']) data = dd.set_express_tpm(data, express_counts_combined['tpm']) data = dd.set_express_fpkm(data, express_counts_combined['fpkm']) data = dd.set_isoform_to_gene(data, express_counts_combined['isoform_to_gene']) if dexseq_combined: data = dd.set_dexseq_counts(data, dexseq_combined_file) updated_samples.append([data]) return updated_samples
def generate_transcript_counts(data): """Generate counts per transcript and per exon from an alignment""" data["count_file"] = featureCounts.count(data) if dd.get_fusion_mode(data, False): oncofuse_file = oncofuse.run(data) if oncofuse_file: data["oncofuse_file"] = oncofuse.run(data) if dd.get_dexseq_gff(data, None): data = dd.set_dexseq_counts(data, dexseq.bcbio_run(data)) return [[data]]
def bcbio_run(data): out_dir = os.path.join(dd.get_work_dir(data), "dexseq") safe_makedir(out_dir) sample_name = dd.get_sample_name(data) out_file = os.path.join(out_dir, sample_name + ".dexseq") bam_file = dd.get_work_bam(data) dexseq_gff = dd.get_dexseq_gff(data) stranded = dd.get_strandedness(data) counts = run_count(bam_file, dexseq_gff, stranded, out_file, data) data = dd.set_dexseq_counts(data, counts) return data
def generate_transcript_counts(data): """Generate counts per transcript and per exon from an alignment""" data["count_file"] = featureCounts.count(data) if dd.get_fusion_mode(data, False): oncofuse_file = oncofuse.run(data) if oncofuse_file: data["oncofuse_file"] = oncofuse.run(data) if dd.get_dexseq_gff(data, None): data = dd.set_dexseq_counts(data, dexseq.bcbio_run(data)) # if RSEM was run, stick the transcriptome BAM file into the datadict if dd.get_aligner(data).lower() == "star" and dd.get_rsem(data): base, ext = os.path.splitext(dd.get_work_bam(data)) data = dd.set_transcriptome_bam(data, base + ".transcriptome" + ext) return [[data]]
def estimate_expression(samples, run_parallel): samples = run_parallel("generate_transcript_counts", samples) count_files = filter_missing([dd.get_count_file(x[0]) for x in samples]) combined = count.combine_count_files(count_files) gtf_file = dd.get_gtf_file(samples[0][0], None) annotated = count.annotate_combined_count_file(combined, gtf_file) samples = run_parallel("run_cufflinks", samples) #gene fpkm_combined_file = os.path.splitext(combined)[0] + ".fpkm" fpkm_files = filter_missing([dd.get_fpkm(x[0]) for x in samples]) fpkm_combined = count.combine_count_files(fpkm_files, fpkm_combined_file) #isoform fpkm_isoform_combined_file = os.path.splitext(combined)[0] + ".isoform.fpkm" isoform_files = filter_missing([dd.get_fpkm_isoform(x[0]) for x in samples]) fpkm_isoform_combined = count.combine_count_files(isoform_files, fpkm_isoform_combined_file, ".isoform.fpkm") dexseq_combined_file = os.path.splitext(combined)[0] + ".dexseq" to_combine_dexseq = filter_missing([dd.get_dexseq_counts(data[0]) for data in samples]) if to_combine_dexseq: dexseq_combined = count.combine_count_files(to_combine_dexseq, dexseq_combined_file, ".dexseq") else: dexseq_combined = None for data in dd.sample_data_iterator(samples): dd.set_combined_counts(data, combined) if annotated: dd.set_annotated_combined_counts(data, annotated) if fpkm_combined: dd.set_combined_fpkm(x[0], fpkm_combined) if fpkm_isoform_combined: dd.set_combined_fpkm_isoform(x[0], fpkm_combined) if dexseq_combined: dd.set_dexseq_counts(x[0], dexseq_combined_file) return samples
def estimate_expression(samples, run_parallel): samples = run_parallel("generate_transcript_counts", samples) combined = count.combine_count_files( [x[0]["count_file"] for x in samples if "count_file" in x[0]]) gtf_file = dd.get_gtf_file(samples[0][0], None) annotated = count.annotate_combined_count_file(combined, gtf_file) samples = run_parallel("run_cufflinks", samples) #gene fpkm_combined_file = os.path.splitext(combined)[0] + ".fpkm" to_combine = [x[0]["fpkm"] for x in samples if "fpkm" in x[0]] fpkm_combined = count.combine_count_files(to_combine, fpkm_combined_file) #isoform fpkm_isoform_combined_file = os.path.splitext( combined)[0] + ".isoform.fpkm" to_combine_isoform = [ x[0]["fpkm_isoform"] for x in samples if "fpkm_isoform" in x[0] ] fpkm_isoform_combined = count.combine_count_files( to_combine_isoform, fpkm_isoform_combined_file, ".isoform.fpkm") dexseq_combined_file = os.path.splitext(combined)[0] + ".dexseq" to_combine_dexseq = [dd.get_dexseq_counts(data[0]) for data in samples] to_combine_dexseq = filter(lambda x: x, to_combine_dexseq) if to_combine_dexseq: dexseq_combined = count.combine_count_files(to_combine_dexseq, dexseq_combined_file, ".dexseq") else: dexseq_combined = None for x in samples: x[0]["combined_counts"] = combined if annotated: x[0]["annotated_combined_counts"] = annotated if fpkm_combined: x[0]["combined_fpkm"] = fpkm_combined if fpkm_isoform_combined: x[0]["combined_fpkm_isoform"] = fpkm_isoform_combined if dexseq_combined: x[0] = dd.set_dexseq_counts(x[0], dexseq_combined_file) return samples
def estimate_expression(samples, run_parallel): samples = run_parallel("generate_transcript_counts", samples) combined = count.combine_count_files([x[0]["count_file"] for x in samples if "count_file" in x[0]]) gtf_file = dd.get_gtf_file(samples[0][0], None) annotated = count.annotate_combined_count_file(combined, gtf_file) samples = run_parallel("run_cufflinks", samples) #gene fpkm_combined_file = os.path.splitext(combined)[0] + ".fpkm" to_combine = [x[0]["fpkm"] for x in samples if "fpkm" in x[0]] fpkm_combined = count.combine_count_files(to_combine, fpkm_combined_file) #isoform fpkm_isoform_combined_file = os.path.splitext(combined)[0] + ".isoform.fpkm" to_combine_isoform = [x[0]["fpkm_isoform"] for x in samples if "fpkm_isoform" in x[0]] fpkm_isoform_combined = count.combine_count_files(to_combine_isoform, fpkm_isoform_combined_file, ".isoform.fpkm") dexseq_combined_file = os.path.splitext(combined)[0] + ".dexseq" to_combine_dexseq = [dd.get_dexseq_counts(data[0]) for data in samples] to_combine_dexseq = filter(lambda x: x, to_combine_dexseq) if to_combine_dexseq: dexseq_combined = count.combine_count_files(to_combine_dexseq, dexseq_combined_file, ".dexseq") else: dexseq_combined = None for x in samples: x[0]["combined_counts"] = combined if annotated: x[0]["annotated_combined_counts"] = annotated if fpkm_combined: x[0]["combined_fpkm"] = fpkm_combined if fpkm_isoform_combined: x[0]["combined_fpkm_isoform"] = fpkm_isoform_combined if dexseq_combined: x[0] = dd.set_dexseq_counts(x[0], dexseq_combined_file) return samples
def combine_files(samples): """ after quantitation, combine the counts/FPKM/TPM/etc into a single table with all samples """ data = samples[0][0] # prefer the supplied transcriptome gtf file gtf_file = dd.get_transcriptome_gtf(data, None) if not gtf_file: gtf_file = dd.get_gtf_file(data, None) dexseq_gff = dd.get_dexseq_gff(data) # combine featureCount files count_files = filter_missing([dd.get_count_file(x[0]) for x in samples]) combined = count.combine_count_files(count_files, ext=".counts") annotated = count.annotate_combined_count_file(combined, gtf_file) # add tx2gene file tx2gene_file = os.path.join(dd.get_work_dir(data), "annotation", "tx2gene.csv") if gtf_file: tx2gene_file = sailfish.create_combined_tx2gene(data) # combine eXpress files express_counts_combined = combine_express(samples, combined) # combine Cufflinks files fpkm_files = filter_missing([dd.get_fpkm(x[0]) for x in samples]) if fpkm_files: fpkm_combined_file = os.path.splitext(combined)[0] + ".fpkm" fpkm_combined = count.combine_count_files(fpkm_files, fpkm_combined_file) else: fpkm_combined = None isoform_files = filter_missing( [dd.get_fpkm_isoform(x[0]) for x in samples]) if isoform_files: fpkm_isoform_combined_file = os.path.splitext( combined)[0] + ".isoform.fpkm" fpkm_isoform_combined = count.combine_count_files( isoform_files, fpkm_isoform_combined_file, ".isoform.fpkm") else: fpkm_isoform_combined = None # combine DEXseq files to_combine_dexseq = filter_missing( [dd.get_dexseq_counts(data[0]) for data in samples]) if to_combine_dexseq: dexseq_combined_file = os.path.splitext(combined)[0] + ".dexseq" dexseq_combined = count.combine_count_files(to_combine_dexseq, dexseq_combined_file, ".dexseq") dexseq.create_dexseq_annotation(dexseq_gff, dexseq_combined) else: dexseq_combined = None samples = spikein.combine_spikein(samples) updated_samples = [] for data in dd.sample_data_iterator(samples): if combined: data = dd.set_combined_counts(data, combined) if annotated: data = dd.set_annotated_combined_counts(data, annotated) if fpkm_combined: data = dd.set_combined_fpkm(data, fpkm_combined) if fpkm_isoform_combined: data = dd.set_combined_fpkm_isoform(data, fpkm_isoform_combined) if express_counts_combined: data = dd.set_express_counts(data, express_counts_combined['counts']) data = dd.set_express_tpm(data, express_counts_combined['tpm']) data = dd.set_express_fpkm(data, express_counts_combined['fpkm']) data = dd.set_isoform_to_gene( data, express_counts_combined['isoform_to_gene']) if dexseq_combined: data = dd.set_dexseq_counts(data, dexseq_combined_file) if gtf_file: data = dd.set_tx2gene(data, tx2gene_file) updated_samples.append([data]) return updated_samples
def combine_files(samples): """ after quantitation, combine the counts/FPKM/TPM/etc into a single table with all samples """ data = samples[0][0] # prefer the supplied transcriptome gtf file gtf_file = dd.get_transcriptome_gtf(data, None) if not gtf_file: gtf_file = dd.get_gtf_file(data, None) dexseq_gff = dd.get_dexseq_gff(data) # combine featureCount files count_files = filter_missing([dd.get_count_file(x[0]) for x in samples]) combined = count.combine_count_files(count_files, ext=".counts") annotated = count.annotate_combined_count_file(combined, gtf_file) # add tx2gene file tx2gene_file = os.path.join(dd.get_work_dir(data), "annotation", "tx2gene.csv") if gtf_file: tx2gene_file = sailfish.create_combined_tx2gene(data) # combine eXpress files express_counts_combined = combine_express(samples, combined) # combine Cufflinks files fpkm_files = filter_missing([dd.get_fpkm(x[0]) for x in samples]) if fpkm_files and combined: fpkm_combined_file = os.path.splitext(combined)[0] + ".fpkm" fpkm_combined = count.combine_count_files(fpkm_files, fpkm_combined_file) else: fpkm_combined = None isoform_files = filter_missing([dd.get_fpkm_isoform(x[0]) for x in samples]) if isoform_files and combined: fpkm_isoform_combined_file = os.path.splitext(combined)[0] + ".isoform.fpkm" fpkm_isoform_combined = count.combine_count_files(isoform_files, fpkm_isoform_combined_file, ".isoform.fpkm") else: fpkm_isoform_combined = None # combine DEXseq files to_combine_dexseq = filter_missing([dd.get_dexseq_counts(data[0]) for data in samples]) if to_combine_dexseq and combined: dexseq_combined_file = os.path.splitext(combined)[0] + ".dexseq" dexseq_combined = count.combine_count_files(to_combine_dexseq, dexseq_combined_file, ".dexseq") if dexseq_combined: dexseq.create_dexseq_annotation(dexseq_gff, dexseq_combined) else: dexseq_combined = None samples = spikein.combine_spikein(samples) updated_samples = [] for data in dd.sample_data_iterator(samples): if combined: data = dd.set_combined_counts(data, combined) if annotated: data = dd.set_annotated_combined_counts(data, annotated) if fpkm_combined: data = dd.set_combined_fpkm(data, fpkm_combined) if fpkm_isoform_combined: data = dd.set_combined_fpkm_isoform(data, fpkm_isoform_combined) if express_counts_combined: data = dd.set_express_counts(data, express_counts_combined['counts']) data = dd.set_express_tpm(data, express_counts_combined['tpm']) data = dd.set_express_fpkm(data, express_counts_combined['fpkm']) data = dd.set_isoform_to_gene(data, express_counts_combined['isoform_to_gene']) if dexseq_combined: data = dd.set_dexseq_counts(data, dexseq_combined_file) if gtf_file: data = dd.set_tx2gene(data, tx2gene_file) updated_samples.append([data]) return updated_samples