예제 #1
0
def clean_inputs(data):
    """Clean BED input files to avoid overlapping segments that cause downstream issues.

    Per-merges inputs to avoid needing to call multiple times during later parallel steps.
    """
    if not utils.get_in(data, ("config", "algorithm", "variant_regions_orig")):
        data["config"]["algorithm"][
            "variant_regions_orig"] = dd.get_variant_regions(data)
    clean_vr = clean_file(dd.get_variant_regions(data), data)
    merged_vr = merge_overlaps(clean_vr, data)
    data["config"]["algorithm"]["variant_regions"] = clean_vr
    data["config"]["algorithm"]["variant_regions_merged"] = merged_vr

    if dd.get_coverage(data):
        if not utils.get_in(data, ("config", "algorithm", "coverage_orig")):
            data["config"]["algorithm"]["coverage_orig"] = dd.get_coverage(
                data)
        clean_cov_bed = clean_file(dd.get_coverage(data),
                                   data,
                                   prefix="cov-",
                                   simple=True)
        merged_cov_bed = merge_overlaps(clean_cov_bed, data)
        data["config"]["algorithm"]["coverage"] = clean_cov_bed
        data["config"]["algorithm"]["coverage_merged"] = merged_cov_bed

    if 'seq2c' in get_svcallers(data):
        seq2c_ready_bed = prep_seq2c_bed(data)
        if not seq2c_ready_bed:
            logger.warning(
                "Can't run Seq2C without a svregions or variant_regions BED file"
            )
        else:
            data["config"]["algorithm"]["seq2c_bed_ready"] = seq2c_ready_bed
    return data
예제 #2
0
def clean_inputs(data):
    """Clean BED input files to avoid overlapping segments that cause downstream issues.

    Per-merges inputs to avoid needing to call multiple times during later parallel steps.
    """
    if not utils.get_in(data, ("config", "algorithm", "variant_regions_orig")):
        data["config"]["algorithm"]["variant_regions_orig"] = dd.get_variant_regions(data)
    clean_vr = clean_file(dd.get_variant_regions(data), data)
    merged_vr = merge_overlaps(clean_vr, data)
    data["config"]["algorithm"]["variant_regions"] = clean_vr
    data["config"]["algorithm"]["variant_regions_merged"] = merged_vr

    if dd.get_coverage(data):
        if not utils.get_in(data, ("config", "algorithm", "coverage_orig")):
            data["config"]["algorithm"]["coverage_orig"] = dd.get_coverage(data)
        clean_cov_bed = clean_file(dd.get_coverage(data), data, prefix="cov-", simple=True)
        merged_cov_bed = merge_overlaps(clean_cov_bed, data)
        data["config"]["algorithm"]["coverage"] = clean_cov_bed
        data["config"]["algorithm"]["coverage_merged"] = merged_cov_bed

    if 'seq2c' in get_svcallers(data):
        seq2c_ready_bed = prep_seq2c_bed(data)
        if not seq2c_ready_bed:
            logger.warning("Can't run Seq2C without a svregions or variant_regions BED file")
        else:
            data["config"]["algorithm"]["seq2c_bed_ready"] = seq2c_ready_bed
    return data
예제 #3
0
def _get_region_bed(region, items, out_file):
    """Retrieve BED file of regions to analyze, either single or multi-region.
    """
    variant_regions = bedutils.merge_overlaps(bedutils.population_variant_regions(items), items[0])
    target = shared.subset_variant_regions(variant_regions, region, out_file, items)
    if not target:
        raise ValueError("Need BED input for strelka2 regions: %s %s" % (region, target))
    if not isinstance(target, basestring) or not os.path.isfile(target):
        chrom, start, end = target
        target = "%s-regions.bed" % utils.splitext_plus(out_file)[0]
        with file_transaction(items[0], target) as tx_out_file:
            with open(tx_out_file, "w") as out_handle:
                out_handle.write("%s\t%s\t%s\n" % (chrom, start, end))
    return bedutils.merge_overlaps(target, items[0], out_dir=os.path.dirname(out_file)) + ".gz"
예제 #4
0
def _get_region_bed(region, items, out_file):
    """Retrieve BED file of regions to analyze, either single or multi-region.
    """
    variant_regions = bedutils.merge_overlaps(bedutils.population_variant_regions(items), items[0])
    target = shared.subset_variant_regions(variant_regions, region, out_file, items)
    if not target:
        raise ValueError("Need BED input for strelka2 regions: %s %s" % (region, target))
    if not isinstance(target, basestring) or not os.path.isfile(target):
        chrom, start, end = target
        target = "%s-regions.bed" % utils.splitext_plus(out_file)[0]
        with file_transaction(items[0], target) as tx_out_file:
            with open(tx_out_file, "w") as out_handle:
                out_handle.write("%s\t%s\t%s\n" % (chrom, start, end))
    return bedutils.merge_overlaps(target, items[0], out_dir=os.path.dirname(out_file)) + ".gz"
예제 #5
0
def _get_target_access_files(cov_interval, data, work_dir):
    """Retrieve target and access files based on the type of data to process.

    pick targets, anti-targets and access files based on analysis type
    http://cnvkit.readthedocs.org/en/latest/nonhybrid.html
    """
    base_regions = regions.get_sv_bed(data)
    # if we don't have a configured BED or regions to use for SV caling
    if not base_regions:
        # For genome calls, subset to regions within 10kb of genes
        if cov_interval == "genome":
            base_regions = regions.get_sv_bed(data, "transcripts1e4", work_dir)
            if base_regions:
                base_regions = shared.remove_exclude_regions(
                    base_regions, base_regions, [data])
        # Finally, default to the defined variant regions
        if not base_regions:
            base_regions = dd.get_variant_regions(data)

    target_bed = bedutils.merge_overlaps(base_regions, data, out_dir=work_dir)
    if cov_interval == "amplicon":
        return target_bed, target_bed
    elif cov_interval == "genome":
        return target_bed, target_bed
    else:
        access_file = _create_access_file(dd.get_ref_file(data),
                                          _sv_workdir(data), data)
        return target_bed, access_file
예제 #6
0
def _get_target_access_files(cov_interval, data, work_dir):
    """Retrieve target and access files based on the type of data to process.

    pick targets, anti-targets and access files based on analysis type
    http://cnvkit.readthedocs.org/en/latest/nonhybrid.html
    """
    base_regions = regions.get_sv_bed(data)
    # if we don't have a configured BED or regions to use for SV caling
    if not base_regions:
        # For genome calls, subset to regions within 10kb of genes
        if cov_interval == "genome":
            base_regions = regions.get_sv_bed(data, "transcripts1e4", work_dir)
            if base_regions:
                base_regions = shared.remove_exclude_regions(base_regions, base_regions, [data])
        # Finally, default to the defined variant regions
        if not base_regions:
            base_regions = dd.get_variant_regions(data)

    target_bed = bedutils.merge_overlaps(base_regions, data, out_dir=work_dir)
    if cov_interval == "amplicon":
        return target_bed, target_bed
    elif cov_interval == "genome":
        return target_bed, target_bed
    else:
        access_file = _create_access_file(dd.get_ref_file(data), _sv_workdir(data), data)
        return target_bed, access_file
예제 #7
0
def run_haplotyper(align_bams,
                   items,
                   ref_file,
                   assoc_files,
                   region=None,
                   out_file=None):
    """Call variants with Sentieon's haplotyper (GATK HaplotypeCaller like).
    """
    if out_file is None:
        out_file = "%s-variants.vcf.gz" % utils.splitext_plus(align_bams[0])[0]
    if not utils.file_exists(out_file):
        variant_regions = bedutils.merge_overlaps(
            dd.get_variant_regions(items[0]), items[0])
        target = shared.subset_variant_regions(variant_regions, region,
                                               out_file, items)
        interval = "--interval %s" % (target) if target else ""
        with file_transaction(items[0], out_file) as tx_out_file:
            dbsnp = "--dbsnp %s" % (
                assoc_files.get("dbsnp")) if "dbsnp" in assoc_files else ""
            bams = " ".join(["-i %s" % x for x in align_bams])
            license = _license_export(items[0])
            cmd = ("{license} sentieon driver -t 1 -r {ref_file} "
                   "{bams} {interval} --algo Haplotyper {dbsnp} {tx_out_file}")
            do.run(cmd.format(**locals()), "Sentieon TNhaplotyper")
    return out_file
예제 #8
0
def _regions_for_coverage(data, region, ref_file, out_file):
    """Retrieve BED file of regions we need to calculate coverage in.

    Checks for variant region specifications that do not overlap contigs
    (in which case we do not calculate coverage) and regions smaller than
    callable_min_size (in which case we assign everything as callable).
    callable_min_size avoids calculations for small chromosomes we won't
    split on later, saving computation and disk IO.
    """
    variant_regions = bedutils.merge_overlaps(dd.get_variant_regions(data), data)
    ready_region = shared.subset_variant_regions(variant_regions, region, out_file)
    custom_file = "%s-coverageregions.bed" % utils.splitext_plus(out_file)[0]
    region_size = _get_region_size(ref_file, data, region)
    if variant_regions is None and region_size is not None and region_size < dd.get_callable_min_size(data):
        coverage_str = "CALLABLE" if realign.has_aligned_reads(dd.get_work_bam(data), region) else "NO_COVERAGE"
        custom_file = _write_all_chrom_file(coverage_str, custom_file, ref_file, region, data)
        return custom_file, False
    elif not ready_region:
        get_ref_bedtool(ref_file, data["config"]).saveas(custom_file)
        return custom_file, True
    elif os.path.isfile(ready_region):
        return ready_region, True
    elif isinstance(ready_region, (list, tuple)):
        c, s, e = ready_region
        pybedtools.BedTool("%s\t%s\t%s\n" % (c, s, e), from_string=True).saveas(custom_file)
        return custom_file, True
    else:
        custom_file = _write_all_chrom_file("NO_COVERAGE", custom_file, ref_file, region, data)
        return custom_file, variant_regions is None
예제 #9
0
def run(bam_file, data, out_dir):
    """Run qualimap to assess alignment quality metrics.
    """
    # Qualimap results should be saved to a directory named after sample.
    # MultiQC (for parsing additional data) picks the sample name after the dir as follows:
    #   <sample name>/raw_data_qualimapReport/insert_size_histogram.txt
    results_dir = os.path.join(out_dir, dd.get_sample_name(data))
    resources = config_utils.get_resources("qualimap", data["config"])
    options = " ".join(resources.get("options", ""))
    report_file = os.path.join(results_dir, "qualimapReport.html")
    utils.safe_makedir(results_dir)
    pdf_file = "qualimapReport.pdf"
    if not utils.file_exists(report_file) and not utils.file_exists(
            os.path.join(results_dir, pdf_file)):
        if "qualimap_full" in tz.get_in(("config", "algorithm", "tools_on"),
                                        data, []):
            logger.info("Full qualimap analysis for %s may be slow." %
                        bam_file)
            ds_bam = bam_file
        else:
            ds_bam = bam.downsample(bam_file, data, 1e7, work_dir=out_dir)
            bam_file = ds_bam if ds_bam else bam_file
        if options.find("PDF") > -1:
            options = "%s -outfile %s" % (options, pdf_file)

        num_cores = data["config"]["algorithm"].get("num_cores", 1)
        qualimap = config_utils.get_program("qualimap", data["config"])
        max_mem = config_utils.adjust_memory(resources.get("memory", "1G"),
                                             num_cores)

        # Fixing the file name: MultiQC picks sample name from BAM file name.
        fixed_bam_fname = os.path.join(out_dir,
                                       dd.get_sample_name(data) + ".bam")
        if not os.path.islink(fixed_bam_fname):
            os.symlink(bam_file, fixed_bam_fname)

        export = utils.local_path_export()
        cmd = (
            "unset DISPLAY && {export} {qualimap} bamqc -bam {fixed_bam_fname} -outdir {results_dir} "
            "--skip-duplicated --skip-dup-mode 0 "
            "-nt {num_cores} --java-mem-size={max_mem} {options}")
        species = None
        if tz.get_in(("genome_resources", "aliases", "human"), data, ""):
            species = "HUMAN"
        elif any(
                tz.get_in("genome_build", data, "").startswith(k)
                for k in ["mm", "GRCm"]):
            species = "MOUSE"
        if species in ["HUMAN", "MOUSE"]:
            cmd += " -gd {species}"
        regions = bedutils.merge_overlaps(
            dd.get_coverage(data), data) or dd.get_variant_regions_merged(data)
        if regions:
            bed6_regions = _bed_to_bed6(regions, out_dir)
            cmd += " -gff {bed6_regions}"
        do.run(cmd.format(**locals()),
               "Qualimap: %s" % dd.get_sample_name(data))

    # return _parse_qualimap_metrics(report_file, data)
    return dict()
예제 #10
0
def run(bam_file, data, out_dir):
    """Run qualimap to assess alignment quality metrics.
    """
    resources = config_utils.get_resources("qualimap", data["config"])
    options = " ".join(resources.get("options", ""))
    report_file = os.path.join(out_dir, "qualimapReport.html")
    pdf_file = "qualimapReport.pdf"
    if not utils.file_exists(report_file) and not utils.file_exists(os.path.join(out_dir, pdf_file)):
        if "qualimap_full" in tz.get_in(("config", "algorithm", "tools_on"), data, []):
            logger.info("Full qualimap analysis for %s may be slow." % bam_file)
            ds_bam = bam_file
        else:
            ds_bam = bam.downsample(bam_file, data, 1e7, work_dir=out_dir)
            bam_file = ds_bam if ds_bam else bam_file
        if options.find("PDF") > -1:
            options = "%s -outfile %s" % (options, pdf_file)
        utils.safe_makedir(out_dir)
        num_cores = data["config"]["algorithm"].get("num_cores", 1)
        qualimap = config_utils.get_program("qualimap", data["config"])
        max_mem = config_utils.adjust_memory(resources.get("memory", "1G"),
                                             num_cores)
        export = utils.local_path_export()
        cmd = ("unset DISPLAY && {export} {qualimap} bamqc -bam {bam_file} -outdir {out_dir} "
               "-nt {num_cores} --java-mem-size={max_mem} {options}")
        species = tz.get_in(("genome_resources", "aliases", "ensembl"), data, "")
        if species in ["HUMAN", "MOUSE"]:
            cmd += " -gd {species}"
        regions = bedutils.merge_overlaps(dd.get_variant_regions(data), data)
        if regions:
            bed6_regions = _bed_to_bed6(regions, out_dir)
            cmd += " -gff {bed6_regions}"
        do.run(cmd.format(**locals()), "Qualimap: %s" % dd.get_sample_name(data))

    return _parse_qualimap_metrics(report_file)
예제 #11
0
def run_tnhaplotyper(align_bams, items, ref_file, assoc_files,
                     region=None, out_file=None):
    """Call variants with Sentieon's TNhaplotyper (MuTect2 like).
    """
    if out_file is None:
        out_file = "%s-variants.vcf.gz" % utils.splitext_plus(align_bams[0])[0]
    if not utils.file_exists(out_file):
        variant_regions = bedutils.merge_overlaps(dd.get_variant_regions(items[0]), items[0])
        interval = _get_interval(variant_regions, region, out_file, items)
        with file_transaction(items[0], out_file) as tx_out_file:
            paired = vcfutils.get_paired_bams(align_bams, items)
            assert paired.normal_bam, "Require normal BAM for Sentieon TNhaplotyper"
            dbsnp = "--dbsnp %s" % (assoc_files.get("dbsnp")) if "dbsnp" in assoc_files else ""
            cosmic = "--cosmic %s" % (assoc_files.get("cosmic")) if "cosmic" in assoc_files else ""
            license = license_export(items[0])
            tx_orig_file = "%s-orig%s" % utils.splitext_plus(tx_out_file)
            cores = dd.get_num_cores(items[0])
            cmd = ("{license}sentieon driver -t {cores} -r {ref_file} "
                   "-i {paired.tumor_bam} -i {paired.normal_bam} {interval} "
                   "--algo TNhaplotyper "
                   "--tumor_sample {paired.tumor_name} --normal_sample {paired.normal_name} "
                   "{dbsnp} {cosmic} {tx_orig_file}")
            do.run(cmd.format(**locals()), "Sentieon TNhaplotyper")
            cmd = ("gunzip -c {tx_orig_file} | "
                   "sed 's/ID=ECNT,Number=1,Type=Integer/ID=ECNT,Number=1,Type=String/' | "
                   "sed 's/ID=HCNT,Number=1,Type=Integer/ID=HCNT,Number=1,Type=String/' | "
                   "sed 's/ID=NLOD,Number=1,Type=Float/ID=NLOD,Number=1,Type=String/' | "
                   "sed 's/ID=TLOD,Number=1,Type=Float/ID=TLOD,Number=1,Type=String/' | "
                   "sed 's/ID=PON,Number=1,Type=Integer/ID=PON,Number=1,Type=String/' | "
                   "bgzip -c > {tx_out_file}")
            do.run(cmd.format(**locals()), "Sentieon TNhaplotyper: make headers GATK compatible")
            vcfutils.bgzip_and_index(tx_out_file, items[0]["config"])
    return out_file
예제 #12
0
def run(bam_file, data, out_dir):
    """Run qualimap to assess alignment quality metrics.
    """
    # Qualimap results should be saved to a directory named after sample.
    # MultiQC (for parsing additional data) picks the sample name after the dir as follows:
    #   <sample name>/raw_data_qualimapReport/insert_size_histogram.txt
    results_dir = os.path.join(out_dir, dd.get_sample_name(data))
    resources = config_utils.get_resources("qualimap", data["config"])
    options = " ".join(resources.get("options", ""))
    results_file = os.path.join(results_dir, "genome_results.txt")
    report_file = os.path.join(results_dir, "qualimapReport.html")
    utils.safe_makedir(results_dir)
    pdf_file = "qualimapReport.pdf"
    if not utils.file_exists(results_file) and not utils.file_exists(os.path.join(results_dir, pdf_file)):
        if "qualimap_full" in tz.get_in(("config", "algorithm", "tools_on"), data, []):
            logger.info("Full qualimap analysis for %s may be slow." % bam_file)
            ds_bam = bam_file
        else:
            ds_bam = bam.downsample(bam_file, data, 1e7, work_dir=out_dir)
            bam_file = ds_bam if ds_bam else bam_file
        if options.find("PDF") > -1:
            options = "%s -outfile %s" % (options, pdf_file)
        num_cores = data["config"]["algorithm"].get("num_cores", 1)
        qualimap = config_utils.get_program("qualimap", data["config"])
        max_mem = config_utils.adjust_memory(resources.get("memory", "1G"),
                                             num_cores)

        with file_transaction(data, results_dir) as tx_results_dir:
            utils.safe_makedir(tx_results_dir)

            export = "%s%s export JAVA_OPTS='-Xms32m -Xmx%s -Djava.io.tmpdir=%s' && " % (
                utils.java_freetype_fix(), utils.local_path_export(), max_mem, tx_results_dir)
            cmd = ("unset DISPLAY && {export} {qualimap} bamqc -bam {bam_file} -outdir {tx_results_dir} "
                   "--skip-duplicated --skip-dup-mode 0 "
                   "-nt {num_cores} {options}")
            species = None
            if (tz.get_in(("genome_resources", "aliases", "human"), data, "")
                  or dd.get_genome_build(data).startswith(("hg", "GRCh"))):
                species = "HUMAN"
            elif dd.get_genome_build(data).startswith(("mm", "GRCm")):
                species = "MOUSE"
            if species in ["HUMAN", "MOUSE"]:
                cmd += " -gd {species}"
            regions = (dd.get_coverage(data) if dd.get_coverage(data) not in [None, False, "None"]
                       else dd.get_variant_regions_merged(data))
            if regions:
                regions = bedutils.merge_overlaps(bedutils.clean_file(regions, data), data)
                bed6_regions = _bed_to_bed6(regions, out_dir)
                cmd += " -gff {bed6_regions}"
            bcbio_env = utils.get_bcbio_env()
            do.run(cmd.format(**locals()), "Qualimap: %s" % dd.get_sample_name(data), env=bcbio_env)
            tx_results_file = os.path.join(tx_results_dir, "genome_results.txt")
            cmd = "sed -i 's/bam file = .*/bam file = %s.bam/' %s" % (dd.get_sample_name(data), tx_results_file)
            do.run(cmd, "Fix Name Qualimap for {}".format(dd.get_sample_name(data)))
    # Qualimap output folder (results_dir) needs to be named after the sample (see comments above). However, in order
    # to keep its name after upload, we need to put  the base QC file (results_file) into the root directory (out_dir):
    base_results_file = os.path.join(out_dir, os.path.basename(results_file))
    shutil.copyfile(results_file, base_results_file)
    return {"base": base_results_file,
            "secondary": _find_qualimap_secondary_files(results_dir, base_results_file)}
예제 #13
0
def _freebayes_options_from_config(items, config, out_file, region=None):
    """Prepare standard options from configuration input.

    Input BED target files are merged to avoid overlapping regions which
    cause FreeBayes to call multiple times.

    Checks for empty sets of target regions after filtering for high depth,
    in which case we should skip the FreeBayes run.
    """
    opts = ["--genotype-qualities", "--strict-vcf"]
    opts += ["--ploidy", str(ploidy.get_ploidy(items, region))]

    variant_regions = bedutils.merge_overlaps(
        bedutils.population_variant_regions(items), items[0])
    # Produce gVCF output
    if any("gvcf" in dd.get_tools_on(d) for d in items):
        opts += ["--gvcf", "--gvcf-chunk", "50000"]
    no_target_regions = False
    target = shared.subset_variant_regions(variant_regions, region, out_file,
                                           items)
    if target:
        if isinstance(target, basestring) and os.path.isfile(target):
            if any(
                    tz.get_in(["config", "algorithm", "coverage_interval"], x,
                              "").lower() == "genome" for x in items):
                target = shared.remove_highdepth_regions(target, items)
                if os.path.getsize(target) == 0:
                    no_target_regions = True
            opts += ["--targets", target]
        else:
            opts += ["--region", region_to_freebayes(target)]
    resources = config_utils.get_resources("freebayes", config)
    if resources.get("options"):
        opts += resources["options"]
    return opts, no_target_regions
예제 #14
0
def shared_variantcall(call_fn, name, align_bams, ref_file, items,
                       assoc_files, region=None, out_file=None):
    """Provide base functionality for prepping and indexing for variant calling.
    """
    config = items[0]["config"]
    if out_file is None:
        if vcfutils.is_paired_analysis(align_bams, items):
            out_file = "%s-paired-variants.vcf.gz" % config["metdata"]["batch"]
        else:
            out_file = "%s-variants.vcf.gz" % os.path.splitext(align_bams[0])[0]
    if not file_exists(out_file):
        logger.debug("Genotyping with {name}: {region} {fname}".format(
              name=name, region=region, fname=os.path.basename(align_bams[0])))
        variant_regions = bedutils.merge_overlaps(bedutils.population_variant_regions(items), items[0])
        target_regions = subset_variant_regions(variant_regions, region, out_file)
        if (variant_regions is not None and isinstance(target_regions, basestring)
              and not os.path.isfile(target_regions)):
            vcfutils.write_empty_vcf(out_file, config)
        else:
            with file_transaction(config, out_file) as tx_out_file:
                call_fn(align_bams, ref_file, items, target_regions,
                        tx_out_file)
    if out_file.endswith(".gz"):
        out_file = vcfutils.bgzip_and_index(out_file, config)
    ann_file = annotation.annotate_nongatk_vcf(out_file, align_bams, assoc_files.get("dbsnp"),
                                               ref_file, config)
    return ann_file
예제 #15
0
def shared_variantcall(call_fn, name, align_bams, ref_file, items,
                       assoc_files, region=None, out_file=None):
    """Provide base functionality for prepping and indexing for variant calling.
    """
    config = items[0]["config"]
    if out_file is None:
        if vcfutils.is_paired_analysis(align_bams, items):
            out_file = "%s-paired-variants.vcf.gz" % config["metdata"]["batch"]
        else:
            out_file = "%s-variants.vcf.gz" % os.path.splitext(align_bams[0])[0]
    if not file_exists(out_file):
        logger.debug("Genotyping with {name}: {region} {fname}".format(
              name=name, region=region, fname=os.path.basename(align_bams[0])))
        variant_regions = bedutils.merge_overlaps(bedutils.population_variant_regions(items), items[0])
        target_regions = subset_variant_regions(variant_regions, region, out_file, items=items)
        if (variant_regions is not None and isinstance(target_regions, basestring)
              and not os.path.isfile(target_regions)):
            vcfutils.write_empty_vcf(out_file, config)
        else:
            with file_transaction(config, out_file) as tx_out_file:
                call_fn(align_bams, ref_file, items, target_regions,
                        tx_out_file)
    if out_file.endswith(".gz"):
        out_file = vcfutils.bgzip_and_index(out_file, config)
    ann_file = annotation.annotate_nongatk_vcf(out_file, align_bams, assoc_files.get("dbsnp"),
                                               ref_file, config)
    return ann_file
예제 #16
0
def _run_qualimap(bam_file, data, out_dir):
    """Run qualimap to assess alignment quality metrics.
    """
    report_file = os.path.join(out_dir, "qualimapReport.html")
    if not os.path.exists(report_file):
        ds_bam = bam.downsample(bam_file, data, 1e7)
        bam_file = ds_bam if ds_bam else bam_file
        utils.safe_makedir(out_dir)
        num_cores = data["config"]["algorithm"].get("num_cores", 1)
        qualimap = config_utils.get_program("qualimap", data["config"])
        resources = config_utils.get_resources("qualimap", data["config"])
        max_mem = config_utils.adjust_memory(resources.get("memory", "1G"),
                                             num_cores)
        cmd = (
            "unset DISPLAY && {qualimap} bamqc -bam {bam_file} -outdir {out_dir} "
            "-nt {num_cores} --java-mem-size={max_mem}")
        species = tz.get_in(("genome_resources", "aliases", "ensembl"), data,
                            "")
        if species in ["HUMAN", "MOUSE"]:
            cmd += " -gd {species}"
        regions = bedutils.merge_overlaps(dd.get_variant_regions(data), data)
        if regions:
            bed6_regions = _bed_to_bed6(regions, out_dir)
            cmd += " -gff {bed6_regions}"
        do.run(cmd.format(**locals()), "Qualimap: %s" % data["name"][-1])
    return _parse_qualimap_metrics(report_file)
예제 #17
0
def _freebayes_options_from_config(items, config, out_file, region=None):
    """Prepare standard options from configuration input.

    Input BED target files are merged to avoid overlapping regions which
    cause FreeBayes to call multiple times.
    """
    opts = []
    opts += ["--ploidy", str(ploidy.get_ploidy(items, region))]

    variant_regions = bedutils.merge_overlaps(utils.get_in(config, ("algorithm", "variant_regions")),
                                              items[0])
    target = subset_variant_regions(variant_regions, region, out_file, items)
    if target:
        if isinstance(target, basestring) and os.path.isfile(target):
            opts += ["--targets", target]
        else:
            opts += ["--region", region_to_freebayes(target)]
    resources = config_utils.get_resources("freebayes", config)
    if resources.get("options"):
        opts += resources["options"]
    if "--min-alternate-fraction" not in " ".join(opts) and "-F" not in " ".join(opts):
        # add minimum reportable allele frequency, for which FreeBayes defaults to 20
        min_af = float(utils.get_in(config, ("algorithm",
                                             "min_allele_fraction"), 20)) / 100.0
        opts += ["--min-alternate-fraction", str(min_af)]
    return opts
예제 #18
0
def _regions_for_coverage(data, region, ref_file, out_file):
    """Retrieve BED file of regions we need to calculate coverage in.
    """
    import pybedtools
    variant_regions = bedutils.merge_overlaps(
        utils.get_in(data, ("config", "algorithm", "variant_regions")), data)
    ready_region = shared.subset_variant_regions(variant_regions, region,
                                                 out_file)
    custom_file = "%s-coverageregions.bed" % utils.splitext_plus(out_file)[0]
    if not ready_region:
        get_ref_bedtool(ref_file, data["config"]).saveas(custom_file)
        return custom_file, True
    elif os.path.isfile(ready_region):
        return ready_region, True
    elif isinstance(ready_region, (list, tuple)):
        c, s, e = ready_region
        pybedtools.BedTool("%s\t%s\t%s\n" % (c, s, e),
                           from_string=True).saveas(custom_file)
        return custom_file, True
    else:
        with file_transaction(data, custom_file) as tx_out_file:
            with open(tx_out_file, "w") as out_handle:
                for feat in get_ref_bedtool(ref_file, data["config"], region):
                    out_handle.write(
                        "%s\t%s\t%s\t%s\n" %
                        (feat.chrom, feat.start, feat.end, "NO_COVERAGE"))
        return custom_file, variant_regions is None
예제 #19
0
def run_haplotyper(align_bams,
                   items,
                   ref_file,
                   assoc_files,
                   region=None,
                   out_file=None):
    """Call variants with Sentieon's haplotyper (GATK HaplotypeCaller like).
    """
    if out_file is None:
        out_file = "%s-variants.vcf.gz" % utils.splitext_plus(align_bams[0])[0]
    if not utils.file_exists(out_file):
        variant_regions = bedutils.merge_overlaps(
            dd.get_variant_regions(items[0]), items[0])
        interval = _get_interval(variant_regions, region, out_file, items)
        with file_transaction(items[0], out_file) as tx_out_file:
            dbsnp = "--dbsnp %s" % (
                assoc_files.get("dbsnp")) if "dbsnp" in assoc_files else ""
            bams = " ".join(["-i %s" % x for x in align_bams])
            license = license_export(items[0])
            cores = dd.get_num_cores(items[0])
            out_mode = "--emit_mode gvcf" if joint.want_gvcf(items) else ""
            cmd = (
                "{license}sentieon driver -t {cores} -r {ref_file} "
                "{bams} {interval} --algo Haplotyper {out_mode} {dbsnp} {tx_out_file}"
            )
            do.run(cmd.format(**locals()), "Sentieon Haplotyper")
    return out_file
예제 #20
0
def run(bam_file, data, out_dir):
    """Run qualimap to assess alignment quality metrics.
    """
    # Qualimap results should be saved to a directory named after sample.
    # MultiQC (for parsing additional data) picks the sample name after the dir as follows:
    #   <sample name>/raw_data_qualimapReport/insert_size_histogram.txt
    results_dir = os.path.join(out_dir, dd.get_sample_name(data))
    resources = config_utils.get_resources("qualimap", data["config"])
    options = " ".join(resources.get("options", ""))
    results_file = os.path.join(results_dir, "genome_results.txt")
    report_file = os.path.join(results_dir, "qualimapReport.html")
    utils.safe_makedir(results_dir)
    pdf_file = "qualimapReport.pdf"
    if not utils.file_exists(results_file) and not utils.file_exists(os.path.join(results_dir, pdf_file)):
        if "qualimap_full" in tz.get_in(("config", "algorithm", "tools_on"), data, []):
            logger.info("Full qualimap analysis for %s may be slow." % bam_file)
            ds_bam = bam_file
        else:
            ds_bam = bam.downsample(bam_file, data, 1e7, work_dir=out_dir)
            bam_file = ds_bam if ds_bam else bam_file
        if options.find("PDF") > -1:
            options = "%s -outfile %s" % (options, pdf_file)
        num_cores = data["config"]["algorithm"].get("num_cores", 1)
        qualimap = config_utils.get_program("qualimap", data["config"])
        max_mem = config_utils.adjust_memory(resources.get("memory", "1G"),
                                             num_cores)

        with file_transaction(data, results_dir) as tx_results_dir:
            utils.safe_makedir(tx_results_dir)

            export = "%s%s export JAVA_OPTS='-Xms32m -Xmx%s -Djava.io.tmpdir=%s' && " % (
                utils.java_freetype_fix(), utils.local_path_export(), max_mem, tx_results_dir)
            cmd = ("unset DISPLAY && {export} {qualimap} bamqc -bam {bam_file} -outdir {tx_results_dir} "
                   "--skip-duplicated --skip-dup-mode 0 "
                   "-nt {num_cores} {options}")
            species = None
            if (tz.get_in(("genome_resources", "aliases", "human"), data, "")
                  or dd.get_genome_build(data).startswith(("hg", "GRCh"))):
                species = "HUMAN"
            elif dd.get_genome_build(data).startswith(("mm", "GRCm")):
                species = "MOUSE"
            if species in ["HUMAN", "MOUSE"]:
                cmd += " -gd {species}"
            regions = (dd.get_coverage(data) if dd.get_coverage(data) not in [None, False, "None"]
                       else dd.get_variant_regions_merged(data))
            if regions:
                regions = bedutils.merge_overlaps(bedutils.clean_file(regions, data), data)
                bed6_regions = _bed_to_bed6(regions, out_dir)
                cmd += " -gff {bed6_regions}"
            bcbio_env = utils.get_bcbio_env()
            do.run(cmd.format(**locals()), "Qualimap: %s" % dd.get_sample_name(data), env=bcbio_env)
            tx_results_file = os.path.join(tx_results_dir, "genome_results.txt")
            cmd = "sed -i 's/bam file = .*/bam file = %s.bam/' %s" % (dd.get_sample_name(data), tx_results_file)
            do.run(cmd, "Fix Name Qualimap for {}".format(dd.get_sample_name(data)))
    # Qualimap output folder (results_dir) needs to be named after the sample (see comments above). However, in order
    # to keep its name after upload, we need to put  the base QC file (results_file) into the root directory (out_dir):
    base_results_file = os.path.join(out_dir, os.path.basename(results_file))
    shutil.copyfile(results_file, base_results_file)
    return {"base": base_results_file,
            "secondary": _find_qualimap_secondary_files(results_dir, base_results_file)}
예제 #21
0
def run_tnscope(align_bams,
                items,
                ref_file,
                assoc_files,
                region=None,
                out_file=None):
    """Call variants with Sentieon's TNscope somatic caller.
    """
    if out_file is None:
        out_file = "%s-variants.vcf.gz" % utils.splitext_plus(align_bams[0])[0]
    if not utils.file_exists(out_file):
        variant_regions = bedutils.merge_overlaps(
            dd.get_variant_regions(items[0]), items[0])
        interval = _get_interval(variant_regions, region, out_file, items)
        with file_transaction(items[0], out_file) as tx_out_file:
            paired = vcfutils.get_paired_bams(align_bams, items)
            assert paired and paired.normal_bam, "Require normal BAM for Sentieon TNscope"
            dbsnp = "--dbsnp %s" % (
                assoc_files.get("dbsnp")) if "dbsnp" in assoc_files else ""
            license = license_export(items[0])
            cmd = (
                "{license}sentieon driver -t 1 -r {ref_file} "
                "-i {paired.tumor_bam} -i {paired.normal_bam} {interval} "
                "--algo TNscope "
                "--tumor_sample {paired.tumor_name} --normal_sample {paired.normal_name} "
                "{dbsnp} {tx_out_file}")
            do.run(cmd.format(**locals()), "Sentieon TNhaplotyper")
    return out_file
예제 #22
0
def _freebayes_options_from_config(items, config, out_file, region=None):
    """Prepare standard options from configuration input.

    Input BED target files are merged to avoid overlapping regions which
    cause FreeBayes to call multiple times.

    Checks for empty sets of target regions after filtering for high depth,
    in which case we should skip the FreeBayes run.
    """
    opts = ["--genotype-qualities"]
    opts += ["--ploidy", str(ploidy.get_ploidy(items, region))]

    variant_regions = bedutils.merge_overlaps(utils.get_in(config, ("algorithm", "variant_regions")),
                                              items[0])
    # Produce gVCF output
    if any("gvcf" in dd.get_tools_on(d) for d in items):
        opts += ["--gvcf", "--gvcf-chunk", "50000"]
    no_target_regions = False
    target = shared.subset_variant_regions(variant_regions, region, out_file, items)
    if target:
        if isinstance(target, basestring) and os.path.isfile(target):
            if any(tz.get_in(["config", "algorithm", "coverage_interval"], x, "").lower() == "genome"
                   for x in items):
                target = shared.remove_highdepth_regions(target, items)
                if os.path.getsize(target) == 0:
                    no_target_regions = True
            opts += ["--targets", target]
        else:
            opts += ["--region", region_to_freebayes(target)]
    resources = config_utils.get_resources("freebayes", config)
    if resources.get("options"):
        opts += resources["options"]
    return opts, no_target_regions
예제 #23
0
def run(bam_file, data, out_dir):
    """Run qualimap to assess alignment quality metrics.
    """
    resources = config_utils.get_resources("qualimap", data["config"])
    options = " ".join(resources.get("options", ""))
    report_file = os.path.join(out_dir, "qualimapReport.html")
    pdf_file = "qualimapReport.pdf"
    if not utils.file_exists(report_file) and not utils.file_exists(os.path.join(out_dir, pdf_file)):
        if "qualimap_full" in tz.get_in(("config", "algorithm", "tools_on"), data, []):
            logger.info("Full qualimap analysis for %s may be slow." % bam_file)
            ds_bam = bam_file
        else:
            ds_bam = bam.downsample(bam_file, data, 1e7, work_dir=out_dir)
            bam_file = ds_bam if ds_bam else bam_file
        if options.find("PDF") > -1:
            options = "%s -outfile %s" % (options, pdf_file)
        utils.safe_makedir(out_dir)
        num_cores = data["config"]["algorithm"].get("num_cores", 1)
        qualimap = config_utils.get_program("qualimap", data["config"])
        max_mem = config_utils.adjust_memory(resources.get("memory", "1G"),
                                             num_cores)
        cmd = ("unset DISPLAY && {qualimap} bamqc -bam {bam_file} -outdir {out_dir} "
               "-nt {num_cores} --java-mem-size={max_mem} {options}")
        species = tz.get_in(("genome_resources", "aliases", "ensembl"), data, "")
        if species in ["HUMAN", "MOUSE"]:
            cmd += " -gd {species}"
        regions = bedutils.merge_overlaps(dd.get_variant_regions(data), data)
        if regions:
            bed6_regions = _bed_to_bed6(regions, out_dir)
            cmd += " -gff {bed6_regions}"
        do.run(cmd.format(**locals()), "Qualimap: %s" % dd.get_sample_name(data))

    return _parse_qualimap_metrics(report_file)
예제 #24
0
def _run_cnvkit_shared(data, test_bams, background_bams, access_file, work_dir,
                       background_name=None):
    """Shared functionality to run CNVkit.
    """
    ref_file = dd.get_ref_file(data)
    raw_work_dir = os.path.join(work_dir, "raw")
    out_base = os.path.splitext(os.path.basename(test_bams[0]))[0].split(".")[0]
    background_cnn = "%s_background.cnn" % (background_name if background_name else "flat")
    files = {"cnr": os.path.join(raw_work_dir, "%s.cnr" % out_base),
             "cns": os.path.join(raw_work_dir, "%s.cns" % out_base),
             "back_cnn": os.path.join(raw_work_dir, background_cnn)}
    if not utils.file_exists(files["cnr"]):
        if os.path.exists(raw_work_dir):
            shutil.rmtree(raw_work_dir)
        with tx_tmpdir(data, work_dir) as tx_work_dir:
            # pick targets, anti-targets and access files based on analysis type
            # http://cnvkit.readthedocs.org/en/latest/nonhybrid.html
            cov_interval = dd.get_coverage_interval(data)
            base_regions = dd.get_variant_regions(data)
            # For genome calls, subset to regions within 10kb of genes
            if cov_interval == "genome":
                base_regions = annotate.subset_by_genes(base_regions, data,
                                                        work_dir, pad=1e4)

            raw_target_bed = bedutils.merge_overlaps(base_regions, data,
                                                     out_dir=work_dir)
            target_bed = annotate.add_genes(raw_target_bed, data)

            # bail out if we ended up with no regions
            if not utils.file_exists(target_bed):
                return {}

            if cov_interval == "amplicon":
                target_opts = ["--targets", target_bed, "--access", target_bed]
            elif cov_interval == "genome":
                target_opts = ["--targets", target_bed, "--access", dd.get_variant_regions(data)]
            else:
                target_opts = ["--targets", target_bed, "--access", access_file]

            cores = min(tz.get_in(["config", "algorithm", "num_cores"], data, 1),
                        len(test_bams) + len(background_bams))
            cmd = [_get_cmd(), "batch"] + \
                  test_bams + ["-n"] + background_bams + ["-f", ref_file] + \
                  target_opts + \
                  ["-d", tx_work_dir, "--split", "-p", str(cores),
                   "--output-reference", os.path.join(tx_work_dir, background_cnn)]
            at_avg, at_min, t_avg = _get_antitarget_size(access_file, target_bed)
            if at_avg:
                cmd += ["--antitarget-avg-size", str(at_avg), "--antitarget-min-size", str(at_min),
                        "--target-avg-size", str(t_avg)]
            local_sitelib = os.path.join(install.get_defaults().get("tooldir", "/usr/local"),
                                         "lib", "R", "site-library")
            cmd += ["--rlibpath", local_sitelib]
            do.run(cmd, "CNVkit batch")
            shutil.move(tx_work_dir, raw_work_dir)
    for ftype in ["cnr", "cns"]:
        if not os.path.exists(files[ftype]):
            raise IOError("Missing CNVkit %s file: %s" % (ftype, files[ftype]))
    return files
예제 #25
0
def _get_regional_bed_file(data):
    """If we are running a non-genome analysis, pull the regional file for analysis.
    """
    variant_regions = bedutils.merge_overlaps(tz.get_in(["config", "algorithm", "variant_regions"], data),
                                              data)
    is_genome = data["config"]["algorithm"].get("coverage_interval", "exome").lower() in ["genome"]
    if variant_regions and utils.file_exists(variant_regions) and not is_genome:
        return variant_regions
예제 #26
0
def _get_regional_bed_file(data):
    """If we are running a non-genome analysis, pull the regional file for analysis.
    """
    variant_regions = bedutils.merge_overlaps(tz.get_in(["config", "algorithm", "variant_regions"], data),
                                              data)
    is_genome = data["config"]["algorithm"].get("coverage_interval", "exome").lower() in ["genome"]
    if variant_regions and utils.file_exists(variant_regions) and not is_genome:
        return variant_regions
예제 #27
0
def _subset_regions(region, base_file, items):
    """Subset to a BED file (or genomic region) for calling.
    """
    variant_regions = bedutils.merge_overlaps(bedutils.population_variant_regions(items), items[0])
    target = pshared.subset_variant_regions(variant_regions, region, base_file, items)
    if isinstance(target, basestring) and os.path.isfile(target):
        return target
    else:
        return bamprep.region_to_gatk(target)
예제 #28
0
def _subset_regions(region, base_file, items):
    """Subset to a BED file (or genomic region) for calling.
    """
    variant_regions = bedutils.merge_overlaps(bedutils.population_variant_regions(items), items[0])
    target = pshared.subset_variant_regions(variant_regions, region, base_file, items)
    if isinstance(target, basestring) and os.path.isfile(target):
        return target
    else:
        return bamprep.region_to_gatk(target)
예제 #29
0
def _clean_regions(items, region):
    """Intersect region with target file if it exists"""
    variant_regions = bedutils.merge_overlaps(bedutils.population_variant_regions(items), items[0])
    with utils.tmpfile() as tx_out_file:
        target = subset_variant_regions(variant_regions, region, tx_out_file, items)
        if target:
            if isinstance(target, basestring) and os.path.isfile(target):
                target = _load_regions(target)
            else:
                target = [target]
            return target
예제 #30
0
파일: qsnp.py 프로젝트: Kisun/bcbio-nextgen
def _clean_regions(items, region):
    """Intersect region with target file if it exists"""
    config = items[0]["config"]
    variant_regions = bedutils.merge_overlaps(utils.get_in(config, ("algorithm", "varaint_regions")), items[0])
    with utils.tmpfile() as tx_out_file:
        target = subset_variant_regions(variant_regions, region, tx_out_file, items)
        if target:
            if isinstance(target, basestring) and os.path.isfile(target):
                target = _load_regions(target)
            else:
                target = [target]
            return target
예제 #31
0
def run(bam_file, data, out_dir):
    """Run qualimap to assess alignment quality metrics.
    """
    # Qualimap results should be saved to a directory named after sample.
    # MultiQC (for parsing additional data) picks the sample name after the dir as follows:
    #   <sample name>/raw_data_qualimapReport/insert_size_histogram.txt
    results_dir = os.path.join(out_dir, dd.get_sample_name(data))
    resources = config_utils.get_resources("qualimap", data["config"])
    options = " ".join(resources.get("options", ""))
    report_file = os.path.join(results_dir, "qualimapReport.html")
    utils.safe_makedir(results_dir)
    pdf_file = "qualimapReport.pdf"
    if not utils.file_exists(report_file) and not utils.file_exists(os.path.join(results_dir, pdf_file)):
        if "qualimap_full" in tz.get_in(("config", "algorithm", "tools_on"), data, []):
            logger.info("Full qualimap analysis for %s may be slow." % bam_file)
            ds_bam = bam_file
        else:
            ds_bam = bam.downsample(bam_file, data, 1e7, work_dir=out_dir)
            bam_file = ds_bam if ds_bam else bam_file
        if options.find("PDF") > -1:
            options = "%s -outfile %s" % (options, pdf_file)

        num_cores = data["config"]["algorithm"].get("num_cores", 1)
        qualimap = config_utils.get_program("qualimap", data["config"])
        max_mem = config_utils.adjust_memory(resources.get("memory", "1G"),
                                             num_cores)

        # Fixing the file name: MultiQC picks sample name from BAM file name.
        fixed_bam_fname = os.path.join(out_dir, dd.get_sample_name(data) + ".bam")
        if not os.path.islink(fixed_bam_fname):
            os.symlink(bam_file, fixed_bam_fname)

        export = utils.local_path_export()
        cmd = ("unset DISPLAY && {export} {qualimap} bamqc -bam {fixed_bam_fname} -outdir {results_dir} "
               "--skip-duplicated --skip-dup-mode 0 "
               "-nt {num_cores} --java-mem-size={max_mem} {options}")
        species = None
        if tz.get_in(("genome_resources", "aliases", "human"), data, ""):
            species = "HUMAN"
        elif any(tz.get_in("genome_build", data, "").startswith(k) for k in ["mm", "GRCm"]):
            species = "MOUSE"
        if species in ["HUMAN", "MOUSE"]:
            cmd += " -gd {species}"
        regions = bedutils.merge_overlaps(dd.get_coverage(data), data) or dd.get_variant_regions_merged(data)
        if regions:
            bed6_regions = _bed_to_bed6(regions, out_dir)
            cmd += " -gff {bed6_regions}"
        do.run(cmd.format(**locals()), "Qualimap: %s" % dd.get_sample_name(data))

    # return _parse_qualimap_metrics(report_file, data)
    return dict()
예제 #32
0
def _clean_regions(items, region):
    """Intersect region with target file if it exists"""
    config = items[0]["config"]
    variant_regions = bedutils.merge_overlaps(
        utils.get_in(config, ("algorithm", "varaint_regions")), items[0])
    with utils.tmpfile() as tx_out_file:
        target = subset_variant_regions(variant_regions, region, tx_out_file,
                                        items)
        if target:
            if isinstance(target, basestring) and os.path.isfile(target):
                target = _load_regions(target)
            else:
                target = [target]
            return target
예제 #33
0
def _run_coverage_qc(bam_file, data, out_dir):
    """Run coverage QC analysis"""
    out = dict()

    total_reads = sambamba.number_of_reads(data, bam_file)
    out['Total_reads'] = total_reads
    mapped = sambamba.number_of_mapped_reads(data, bam_file)
    out['Mapped_reads'] = mapped
    if total_reads:
        out['Mapped_reads_pct'] = 100.0 * mapped / total_reads
    if mapped:
        mapped_unique = sambamba.number_of_mapped_reads(data, bam_file, keep_dups=False)
        out['Mapped_unique_reads'] = mapped
        mapped_dups = mapped - mapped_unique
        out['Duplicates'] = mapped_dups
        out['Duplicates_pct'] = 100.0 * mapped_dups / mapped

        if dd.get_coverage(data):
            cov_bed_file = clean_file(dd.get_coverage(data), data, prefix="cov-", simple=True)
            merged_bed_file = bedutils.merge_overlaps(cov_bed_file, data)
            target_name = "coverage"
        else:
            merged_bed_file = dd.get_variant_regions_merged(data)
            target_name = "variant_regions"

        ontarget = sambamba.number_mapped_reads_on_target(
            data, merged_bed_file, bam_file, keep_dups=False, target_name=target_name)
        if mapped_unique:
            out["Ontarget_unique_reads"] = ontarget
            out["Ontarget_pct"] = 100.0 * ontarget / mapped_unique
            out['Offtarget_pct'] = 100.0 * (mapped_unique - ontarget) / mapped_unique
            padded_bed_file = bedutils.get_padded_bed_file(merged_bed_file, 200, data)
            ontarget_padded = sambamba.number_mapped_reads_on_target(
                data, padded_bed_file, bam_file, keep_dups=False, target_name=target_name + "_padded")
            out["Ontarget_padded_pct"] = 100.0 * ontarget_padded / mapped_unique
        if total_reads:
            out['Usable_pct'] = 100.0 * ontarget / total_reads

        avg_coverage = get_average_coverage(data, bam_file, merged_bed_file, target_name)
        out['Avg_coverage'] = avg_coverage

    priority = cov.priority_coverage(data, out_dir)
    cov.priority_total_coverage(data, out_dir)
    region_coverage_file = cov.coverage_region_detailed_stats(data, out_dir)
    # Re-enable with annotations from internally installed
    # problem region directory
    # if priority:
    #    annotated = cov.decorate_problem_regions(priority, problem_regions)

    return out
예제 #34
0
def _get_target_access_files(cov_interval, data, work_dir):
    """Retrieve target and access files based on the type of data to process.

    pick targets, anti-targets and access files based on analysis type
    http://cnvkit.readthedocs.org/en/latest/nonhybrid.html
    """
    base_regions = shared.get_base_cnv_regions(data, work_dir)
    target_bed = bedutils.merge_overlaps(base_regions, data, out_dir=work_dir)
    if cov_interval == "amplicon":
        return target_bed, target_bed
    elif cov_interval == "genome":
        return target_bed, target_bed
    else:
        access_file = _create_access_file(dd.get_ref_file(data), _sv_workdir(data), data)
        return target_bed, access_file
예제 #35
0
def _get_target_access_files(cov_interval, data, work_dir):
    """Retrieve target and access files based on the type of data to process.

    pick targets, anti-targets and access files based on analysis type
    http://cnvkit.readthedocs.org/en/latest/nonhybrid.html
    """
    base_regions = shared.get_base_cnv_regions(data, work_dir)
    target_bed = bedutils.merge_overlaps(base_regions, data, out_dir=work_dir)
    if cov_interval == "amplicon":
        return target_bed, target_bed
    elif cov_interval == "genome":
        return target_bed, target_bed
    else:
        access_file = _create_access_file(dd.get_ref_file(data), _sv_workdir(data), data)
        return target_bed, access_file
예제 #36
0
def _bed_to_platypusin(region, base_file, items):
    """Convert BED file regions into Platypus custom inputs.
    """
    variant_regions = bedutils.merge_overlaps(tz.get_in(["config", "algorithm", "variant_regions"], items[0]),
                                              items[0])
    target = pshared.subset_variant_regions(variant_regions, region, base_file, items)
    if isinstance(target, basestring) and os.path.isfile(target):
        out_file = "%s-platypusregion.list" % utils.splitext_plus(base_file)[0]
        if not utils.file_exists(out_file):
            with file_transaction(items[0], out_file) as tx_out_file:
                with open(tx_out_file, "w") as out_handle:
                    for region in pybedtools.BedTool(target):
                        out_handle.write("%s:%s-%s\n" % (region.chrom, region.start, region.stop))
        return out_file
    else:
        return bamprep.region_to_gatk(target)
예제 #37
0
def run_haplotyper(align_bams, items, ref_file, assoc_files,
                     region=None, out_file=None):
    """Call variants with Sentieon's haplotyper (GATK HaplotypeCaller like).
    """
    if out_file is None:
        out_file = "%s-variants.vcf.gz" % utils.splitext_plus(align_bams[0])[0]
    if not utils.file_exists(out_file):
        variant_regions = bedutils.merge_overlaps(dd.get_variant_regions(items[0]), items[0])
        interval = _get_interval(variant_regions, region, out_file, items)
        with file_transaction(items[0], out_file) as tx_out_file:
            dbsnp = "--dbsnp %s" % (assoc_files.get("dbsnp")) if "dbsnp" in assoc_files else ""
            bams = " ".join(["-i %s" % x for x in align_bams])
            license = license_export(items[0])
            cmd = ("{license}sentieon driver -t 1 -r {ref_file} "
                   "{bams} {interval} --algo Haplotyper {dbsnp} {tx_out_file}")
            do.run(cmd.format(**locals()), "Sentieon TNhaplotyper")
    return out_file
예제 #38
0
def _run_coverage_qc(bam_file, data, out_dir):
    """Run coverage QC analysis"""
    out = dict()
    if dd.get_coverage(data):
        bed_file = bedutils.merge_overlaps(dd.get_coverage(data), data)
        target_name = "coverage"
    elif dd.get_variant_regions_merged(data):
        bed_file = dd.get_variant_regions_merged(data)
        target_name = "variant_regions"
    else:
        bed_file = None
        target_name = "wgs"

    bed_file = clean_file(bed_file, data, prefix="cov-", simple=True)
    offtarget_stats_file = calculate_offtarget_stats(bam_file, data, bed_file,
                                                     target_name)
    if offtarget_stats_file and utils.file_exists(offtarget_stats_file):
        with open(offtarget_stats_file) as in_handle:
            stats = yaml.safe_load(in_handle)
        offtarget = stats.get('offtarget')
        mapped_unique = stats['mapped_unique']
        if offtarget and mapped_unique:
            out['offtarget_rate'] = 1.0 * offtarget / mapped_unique
        mapped = stats['mapped']
        if mapped:
            out['Duplicates'] = mapped - mapped_unique
            out['Duplicates_pct'] = 1.0 * (mapped - mapped_unique) / mapped
        total_reads = stats['total_reads']
        if total_reads:
            out['usable_rate'] = 1.0 * (mapped_unique -
                                        offtarget) / total_reads

    avg_coverage = get_average_coverage(data, bam_file, bed_file, target_name)
    out['avg_coverage'] = avg_coverage

    priority = cov.priority_coverage(data, out_dir)
    cov.priority_total_coverage(data, out_dir)
    region_coverage_file = cov.coverage_region_detailed_stats(data, out_dir)
    # Re-enable with annotations from internally installed
    # problem region directory
    # if priority:
    #    annotated = cov.decorate_problem_regions(priority, problem_regions)

    return out
예제 #39
0
def run_tnhaplotyper(align_bams,
                     items,
                     ref_file,
                     assoc_files,
                     region=None,
                     out_file=None):
    """Call variants with Sentieon's TNhaplotyper (MuTect2 like).
    """
    if out_file is None:
        out_file = "%s-variants.vcf.gz" % utils.splitext_plus(align_bams[0])[0]
    if not utils.file_exists(out_file):
        variant_regions = bedutils.merge_overlaps(
            dd.get_variant_regions(items[0]), items[0])
        interval = _get_interval(variant_regions, region, out_file, items)
        with file_transaction(items[0], out_file) as tx_out_file:
            paired = vcfutils.get_paired_bams(align_bams, items)
            assert paired.normal_bam, "Require normal BAM for Sentieon TNhaplotyper"
            dbsnp = "--dbsnp %s" % (
                assoc_files.get("dbsnp")) if "dbsnp" in assoc_files else ""
            cosmic = "--cosmic %s" % (
                assoc_files.get("cosmic")) if "cosmic" in assoc_files else ""
            license = license_export(items[0])
            tx_orig_file = "%s-orig%s" % utils.splitext_plus(tx_out_file)
            cores = dd.get_num_cores(items[0])
            cmd = (
                "{license}sentieon driver -t {cores} -r {ref_file} "
                "-i {paired.tumor_bam} -i {paired.normal_bam} {interval} "
                "--algo TNhaplotyper "
                "--tumor_sample {paired.tumor_name} --normal_sample {paired.normal_name} "
                "{dbsnp} {cosmic} {tx_orig_file}")
            do.run(cmd.format(**locals()), "Sentieon TNhaplotyper")
            cmd = (
                "gunzip -c {tx_orig_file} | "
                "sed 's/ID=ECNT,Number=1,Type=Integer/ID=ECNT,Number=1,Type=String/' | "
                "sed 's/ID=HCNT,Number=1,Type=Integer/ID=HCNT,Number=1,Type=String/' | "
                "sed 's/ID=NLOD,Number=1,Type=Float/ID=NLOD,Number=1,Type=String/' | "
                "sed 's/ID=TLOD,Number=1,Type=Float/ID=TLOD,Number=1,Type=String/' | "
                "sed 's/ID=PON,Number=1,Type=Integer/ID=PON,Number=1,Type=String/' | "
                "bgzip -c > {tx_out_file}")
            do.run(cmd.format(**locals()),
                   "Sentieon TNhaplotyper: make headers GATK compatible")
            vcfutils.bgzip_and_index(tx_out_file, items[0]["config"])
    return out_file
예제 #40
0
def _freebayes_options_from_config(items, config, out_file, region=None):
    """Prepare standard options from configuration input.

    Input BED target files are merged to avoid overlapping regions which
    cause FreeBayes to call multiple times.

    Checks for empty sets of target regions after filtering for high depth,
    in which case we should skip the FreeBayes run.
    """
    opts = ["--genotype-qualities", "--strict-vcf"]
    cur_ploidy = ploidy.get_ploidy(items, region)
    base_ploidy = ploidy.get_ploidy(items)
    opts += ["--ploidy", str(cur_ploidy)]
    # Adjust min fraction when trying to call more sensitively in certain
    # regions. This is primarily meant for pooled mitochondrial calling.
    if (isinstance(region,
                   (list, tuple)) and chromhacks.is_mitochondrial(region[0])
            and cur_ploidy >= base_ploidy
            and "--min-alternate-fraction" not in opts and "-F" not in opts):
        opts += ["--min-alternate-fraction", "0.01"]
    variant_regions = bedutils.merge_overlaps(
        bedutils.population_variant_regions(items), items[0])
    # Produce gVCF output
    if any("gvcf" in dd.get_tools_on(d) for d in items):
        opts += ["--gvcf", "--gvcf-chunk", "50000"]
    no_target_regions = False
    target = shared.subset_variant_regions(variant_regions, region, out_file,
                                           items)
    if target:
        if isinstance(target, basestring) and os.path.isfile(target):
            if any(
                    tz.get_in(["config", "algorithm", "coverage_interval"], x,
                              "").lower() == "genome" for x in items):
                target = shared.remove_highdepth_regions(target, items)
                if os.path.getsize(target) == 0:
                    no_target_regions = True
            opts += ["--targets", target]
        else:
            opts += ["--region", region_to_freebayes(target)]
    resources = config_utils.get_resources("freebayes", config)
    if resources.get("options"):
        opts += resources["options"]
    return opts, no_target_regions
예제 #41
0
def _freebayes_options_from_config(items, config, out_file, region=None):
    """Prepare standard options from configuration input.

    Input BED target files are merged to avoid overlapping regions which
    cause FreeBayes to call multiple times.
    """
    opts = []
    opts += ["--ploidy", str(ploidy.get_ploidy(items, region))]

    variant_regions = bedutils.merge_overlaps(utils.get_in(config, ("algorithm", "variant_regions")), items[0])
    target = subset_variant_regions(variant_regions, region, out_file, items)
    if target:
        if isinstance(target, basestring) and os.path.isfile(target):
            opts += ["--targets", target]
        else:
            opts += ["--region", region_to_freebayes(target)]
    resources = config_utils.get_resources("freebayes", config)
    if resources.get("options"):
        opts += resources["options"]
    return opts
예제 #42
0
def _freebayes_options_from_config(items, config, out_file, region=None):
    """Prepare standard options from configuration input.

    Input BED target files are merged to avoid overlapping regions which
    cause FreeBayes to call multiple times.
    """
    opts = []
    opts += ["--ploidy", str(ploidy.get_ploidy(items, region))]

    variant_regions = bedutils.merge_overlaps(utils.get_in(config, ("algorithm", "variant_regions")),
                                              items[0])
    target = subset_variant_regions(variant_regions, region, out_file, items)
    if target:
        if isinstance(target, basestring) and os.path.isfile(target):
            opts += ["--targets", target]
        else:
            opts += ["--region", region_to_freebayes(target)]
    resources = config_utils.get_resources("freebayes", config)
    if resources.get("options"):
        opts += resources["options"]
    return opts
예제 #43
0
def run_tnscope(align_bams, items, ref_file, assoc_files,
                     region=None, out_file=None):
    """Call variants with Sentieon's TNscope somatic caller.
    """
    if out_file is None:
        out_file = "%s-variants.vcf.gz" % utils.splitext_plus(align_bams[0])[0]
    if not utils.file_exists(out_file):
        variant_regions = bedutils.merge_overlaps(dd.get_variant_regions(items[0]), items[0])
        interval = _get_interval(variant_regions, region, out_file, items)
        with file_transaction(items[0], out_file) as tx_out_file:
            paired = vcfutils.get_paired_bams(align_bams, items)
            assert paired and paired.normal_bam, "Require normal BAM for Sentieon TNscope"
            dbsnp = "--dbsnp %s" % (assoc_files.get("dbsnp")) if "dbsnp" in assoc_files else ""
            license = license_export(items[0])
            cmd = ("{license}sentieon driver -t 1 -r {ref_file} "
                   "-i {paired.tumor_bam} -i {paired.normal_bam} {interval} "
                   "--algo TNscope "
                   "--tumor_sample {paired.tumor_name} --normal_sample {paired.normal_name} "
                   "{dbsnp} {tx_out_file}")
            do.run(cmd.format(**locals()), "Sentieon TNhaplotyper")
    return out_file
예제 #44
0
def _regions_for_coverage(data, region, ref_file, out_file):
    """Retrieve BED file of regions we need to calculate coverage in.
    """
    variant_regions = bedutils.merge_overlaps(dd.get_variant_regions(data), data)
    ready_region = shared.subset_variant_regions(variant_regions, region, out_file)
    custom_file = "%s-coverageregions.bed" % utils.splitext_plus(out_file)[0]
    if not ready_region:
        get_ref_bedtool(ref_file, data["config"]).saveas(custom_file)
        return custom_file, True
    elif os.path.isfile(ready_region):
        return ready_region, True
    elif isinstance(ready_region, (list, tuple)):
        c, s, e = ready_region
        pybedtools.BedTool("%s\t%s\t%s\n" % (c, s, e), from_string=True).saveas(custom_file)
        return custom_file, True
    else:
        with file_transaction(data, custom_file) as tx_out_file:
            with open(tx_out_file, "w") as out_handle:
                for feat in get_ref_bedtool(ref_file, data["config"], region):
                    out_handle.write("%s\t%s\t%s\t%s\n" % (feat.chrom, feat.start, feat.end, "NO_COVERAGE"))
        return custom_file, variant_regions is None
예제 #45
0
def _freebayes_options_from_config(items, config, out_file, region=None):
    """Prepare standard options from configuration input.

    Input BED target files are merged to avoid overlapping regions which
    cause FreeBayes to call multiple times.

    Checks for empty sets of target regions after filtering for high depth,
    in which case we should skip the FreeBayes run.
    """
    opts = ["--genotype-qualities", "--strict-vcf"]
    cur_ploidy = ploidy.get_ploidy(items, region)
    base_ploidy = ploidy.get_ploidy(items)
    opts += ["--ploidy", str(cur_ploidy)]
    # Adjust min fraction when trying to call more sensitively in certain
    # regions. This is primarily meant for pooled mitochondrial calling.
    if (isinstance(region, (list, tuple)) and chromhacks.is_mitochondrial(region[0])
          and cur_ploidy >= base_ploidy and "--min-alternate-fraction" not in opts and "-F" not in opts):
        opts += ["--min-alternate-fraction", "0.01"]
    variant_regions = bedutils.merge_overlaps(bedutils.population_variant_regions(items), items[0])
    # Produce gVCF output
    if any("gvcf" in dd.get_tools_on(d) for d in items):
        opts += ["--gvcf", "--gvcf-chunk", "50000"]
    no_target_regions = False
    target = shared.subset_variant_regions(variant_regions, region, out_file, items)
    if target:
        if isinstance(target, basestring) and os.path.isfile(target):
            if any(tz.get_in(["config", "algorithm", "coverage_interval"], x, "").lower() == "genome"
                   for x in items):
                target = shared.remove_highdepth_regions(target, items)
                if os.path.getsize(target) == 0:
                    no_target_regions = True
            opts += ["--targets", target]
        else:
            opts += ["--region", region_to_freebayes(target)]
    resources = config_utils.get_resources("freebayes", config)
    if resources.get("options"):
        opts += resources["options"]
    return opts, no_target_regions
예제 #46
0
def _run_qualimap(bam_file, data, out_dir):
    """Run qualimap to assess alignment quality metrics.
    """
    report_file = os.path.join(out_dir, "qualimapReport.html")
    if not os.path.exists(report_file):
        ds_bam = bam.downsample(bam_file, data, 1e7)
        bam_file = ds_bam if ds_bam else bam_file
        utils.safe_makedir(out_dir)
        num_cores = data["config"]["algorithm"].get("num_cores", 1)
        qualimap = config_utils.get_program("qualimap", data["config"])
        resources = config_utils.get_resources("qualimap", data["config"])
        max_mem = config_utils.adjust_memory(resources.get("memory", "1G"),
                                             num_cores)
        cmd = ("unset DISPLAY && {qualimap} bamqc -bam {bam_file} -outdir {out_dir} "
               "-nt {num_cores} --java-mem-size={max_mem}")
        species = data["genome_resources"]["aliases"].get("ensembl", "").upper()
        if species in ["HUMAN", "MOUSE"]:
            cmd += " -gd {species}"
        regions = bedutils.merge_overlaps(dd.get_variant_regions(data), data)
        if regions:
            bed6_regions = _bed_to_bed6(regions, out_dir)
            cmd += " -gff {bed6_regions}"
        do.run(cmd.format(**locals()), "Qualimap: %s" % data["name"][-1])
    return _parse_qualimap_metrics(report_file)
예제 #47
0
def _run_coverage_qc(bam_file, data, out_dir):
    """Run coverage QC analysis"""
    out = dict()

    total_reads = sambamba.number_of_reads(data, bam_file)
    out['Total_reads'] = total_reads
    mapped = sambamba.number_of_mapped_reads(data, bam_file)
    out['Mapped_reads'] = mapped
    if total_reads:
        out['Mapped_reads_pct'] = 100.0 * mapped / total_reads
    if mapped:
        mapped_unique = sambamba.number_of_mapped_reads(data,
                                                        bam_file,
                                                        keep_dups=False)
        out['Mapped_unique_reads'] = mapped
        mapped_dups = mapped - mapped_unique
        out['Duplicates'] = mapped_dups
        out['Duplicates_pct'] = 100.0 * mapped_dups / mapped

        if dd.get_coverage(data):
            cov_bed_file = clean_file(dd.get_coverage(data),
                                      data,
                                      prefix="cov-",
                                      simple=True)
            merged_bed_file = bedutils.merge_overlaps(cov_bed_file, data)
            target_name = "coverage"
        else:
            merged_bed_file = dd.get_variant_regions_merged(data)
            target_name = "variant_regions"

        ontarget = sambamba.number_mapped_reads_on_target(
            data,
            merged_bed_file,
            bam_file,
            keep_dups=False,
            target_name=target_name)
        if mapped_unique:
            out["Ontarget_unique_reads"] = ontarget
            out["Ontarget_pct"] = 100.0 * ontarget / mapped_unique
            out['Offtarget_pct'] = 100.0 * (mapped_unique -
                                            ontarget) / mapped_unique
            padded_bed_file = bedutils.get_padded_bed_file(
                merged_bed_file, 200, data)
            ontarget_padded = sambamba.number_mapped_reads_on_target(
                data,
                padded_bed_file,
                bam_file,
                keep_dups=False,
                target_name=target_name + "_padded")
            out["Ontarget_padded_pct"] = 100.0 * ontarget_padded / mapped_unique
        if total_reads:
            out['Usable_pct'] = 100.0 * ontarget / total_reads

        avg_coverage = get_average_coverage(data, bam_file, merged_bed_file,
                                            target_name)
        out['Avg_coverage'] = avg_coverage

    priority = cov.priority_coverage(data, out_dir)
    cov.priority_total_coverage(data, out_dir)
    region_coverage_file = cov.coverage_region_detailed_stats(data, out_dir)
    # Re-enable with annotations from internally installed
    # problem region directory
    # if priority:
    #    annotated = cov.decorate_problem_regions(priority, problem_regions)

    return out
예제 #48
0
def _run_coverage_qc(bam_file, data, out_dir):
    """Run coverage QC analysis"""
    out = dict()

    samtools_stats_dir = os.path.join(out_dir, os.path.pardir, out_dir)
    from bcbio.qc import samtools
    samtools_stats = samtools.run(bam_file, data, samtools_stats_dir)

    if "Total_reads" not in samtools_stats:
        return
    out["Total_reads"] = total_reads = int(samtools_stats["Total_reads"])
    if not total_reads:
        return

    if "Mapped_reads_raw" not in samtools_stats or "Mapped_reads" not in samtools_stats:
        return
    out["Mapped_reads"] = mapped = int(samtools_stats["Mapped_reads"])
    out["Mapped_reads_pct"] = 100.0 * mapped / total_reads
    if not mapped:
        return out

    if "Duplicates" in samtools_stats:
        out['Duplicates'] = dups = int(samtools_stats["Duplicates"])
        out['Duplicates_pct'] = 100.0 * dups / int(samtools_stats["Mapped_reads_raw"])
    else:
        dups = 0

    if dd.get_coverage(data) and dd.get_coverage(data) not in ["None"]:
        cov_bed_file = bedutils.clean_file(dd.get_coverage(data), data, prefix="cov-", simple=True)
        merged_bed_file = bedutils.merge_overlaps(cov_bed_file, data)
        target_name = "coverage"
    elif dd.get_coverage_interval(data) != "genome":
        merged_bed_file = dd.get_variant_regions_merged(data)
        target_name = "variant_regions"
    else:
        merged_bed_file = None
        target_name = "genome"

    # Whole genome runs do not need detailed on-target calculations, use total unique mapped
    if dd.get_coverage_interval(data) == "genome":
        mapped_unique = mapped - dups
    else:
        out['Mapped_unique_reads'] = mapped_unique = sambamba.number_of_mapped_reads(data, bam_file, keep_dups=False)

    if merged_bed_file:
        ontarget = sambamba.number_of_mapped_reads(
            data, bam_file, keep_dups=False, bed_file=merged_bed_file, target_name=target_name)
        if mapped_unique:
            out["Ontarget_unique_reads"] = ontarget
            out["Ontarget_pct"] = 100.0 * ontarget / mapped_unique
            out['Offtarget_pct'] = 100.0 * (mapped_unique - ontarget) / mapped_unique
            if dd.get_coverage_interval(data) != "genome":
                # Skip padded calculation for WGS even if the "coverage" file is specified
                # the padded statistic makes only sense for exomes and panels
                padded_bed_file = bedutils.get_padded_bed_file(merged_bed_file, 200, data)
                ontarget_padded = sambamba.number_of_mapped_reads(
                    data, bam_file, keep_dups=False, bed_file=padded_bed_file, target_name=target_name + "_padded")
                out["Ontarget_padded_pct"] = 100.0 * ontarget_padded / mapped_unique
        if total_reads:
            out['Usable_pct'] = 100.0 * ontarget / total_reads

    avg_depth = cov.get_average_coverage(data, bam_file, merged_bed_file, target_name)
    out['Avg_coverage'] = avg_depth

    region_coverage_file = cov.coverage_region_detailed_stats(data, out_dir,
                                                              extra_cutoffs=set([max(1, int(avg_depth * 0.8))]))

    return out
예제 #49
0
def _run_coverage_qc(bam_file, data, out_dir):
    """Run coverage QC analysis"""
    out = dict()

    samtools_stats_dir = os.path.join(out_dir, os.path.pardir, out_dir)
    from bcbio.qc import samtools
    samtools_stats = samtools.run(bam_file, data, samtools_stats_dir)

    if "Total_reads" not in samtools_stats:
        return
    out["Total_reads"] = total_reads = int(samtools_stats["Total_reads"])
    if not total_reads:
        return

    if "Mapped_reads_raw" not in samtools_stats or "Mapped_reads" not in samtools_stats:
        return
    out["Mapped_reads"] = mapped = int(samtools_stats["Mapped_reads"])
    out["Mapped_reads_pct"] = 100.0 * mapped / total_reads
    if not mapped:
        return out

    if "Duplicates" in samtools_stats:
        out['Duplicates'] = dups = int(samtools_stats["Duplicates"])
        out['Duplicates_pct'] = 100.0 * dups / int(
            samtools_stats["Mapped_reads_raw"])
    else:
        dups = 0

    if dd.get_coverage(data):
        cov_bed_file = bedutils.clean_file(dd.get_coverage(data),
                                           data,
                                           prefix="cov-",
                                           simple=True)
        merged_bed_file = bedutils.merge_overlaps(cov_bed_file, data)
        target_name = "coverage"
    elif dd.get_coverage_interval(data) != "genome":
        merged_bed_file = dd.get_variant_regions_merged(data)
        target_name = "variant_regions"
    else:
        merged_bed_file = None
        target_name = "genome"

    # Whole genome runs do not need detailed on-target calculations, use total unique mapped
    if dd.get_coverage_interval(data) == "genome":
        mapped_unique = mapped - dups
    else:
        out['Mapped_unique_reads'] = mapped_unique = sambamba.number_of_mapped_reads(
            data, bam_file, keep_dups=False)

    if merged_bed_file:
        ontarget = sambamba.number_of_mapped_reads(data,
                                                   bam_file,
                                                   keep_dups=False,
                                                   bed_file=merged_bed_file,
                                                   target_name=target_name)
        if mapped_unique:
            out["Ontarget_unique_reads"] = ontarget
            out["Ontarget_pct"] = 100.0 * ontarget / mapped_unique
            out['Offtarget_pct'] = 100.0 * (mapped_unique -
                                            ontarget) / mapped_unique
            if dd.get_coverage_interval(data) != "genome":
                # Skip padded calculation for WGS even if the "coverage" file is specified
                # the padded statistic makes only sense for exomes and panels
                padded_bed_file = bedutils.get_padded_bed_file(
                    merged_bed_file, 200, data)
                ontarget_padded = sambamba.number_of_mapped_reads(
                    data,
                    bam_file,
                    keep_dups=False,
                    bed_file=padded_bed_file,
                    target_name=target_name + "_padded")
                out["Ontarget_padded_pct"] = 100.0 * ontarget_padded / mapped_unique
        if total_reads:
            out['Usable_pct'] = 100.0 * ontarget / total_reads

    avg_depth = cov.get_average_coverage(data, bam_file, merged_bed_file,
                                         target_name)
    out['Avg_coverage'] = avg_depth

    region_coverage_file = cov.coverage_region_detailed_stats(
        data, out_dir, extra_cutoffs=set([max(1, int(avg_depth * 0.8))]))

    return out