def behavior(self): ### Behavior Analysis ### behavior_plot_dir = os.path.join(self.FIG_SAVE_DIR, 'behavior') behavior_analysis.plot_behavior(self.trials, behavior_plot_dir, prefix=self.figure_prefix) trial_types, counts = behavior_analysis.get_trial_counts(self.trials) behavior_analysis.plot_trial_type_pie(counts, trial_types, behavior_plot_dir, prefix=self.figure_prefix)
def behavior(self): ### Behavior Analysis ### behavior_plot_dir = os.path.join(self.FIG_SAVE_DIR, 'behavior') behavior_analysis.plot_behavior(self.trials, behavior_plot_dir, prefix=self.figure_prefix) behavior_analysis.plot_trial_licks(self.trials, self.vsync_times, self.behavior_start_frame, behavior_plot_dir, prefix=self.figure_prefix) trial_types, counts = behavior_analysis.get_trial_counts(self.trials) behavior_analysis.plot_trial_type_pie(counts, trial_types, behavior_plot_dir, prefix=self.figure_prefix) pkl_list = [ getattr(self, pd) for pd in ['behavior_data', 'mapping_data', 'replay_data'] if hasattr(self, pd) ] analysis.plot_running_wheel(pkl_list, behavior_plot_dir, save_plotly=False, prefix=self.figure_prefix)
def run_qc(exp_id, save_root): identifier = exp_id if identifier.find('_') >= 0: d = data_getters.local_data_getter(base_dir=identifier) else: d = data_getters.lims_data_getter(exp_id=identifier) paths = d.data_dict FIG_SAVE_DIR = os.path.join( save_root, paths['es_id'] + '_' + paths['external_specimen_name'] + '_' + paths['datestring']) if not os.path.exists(FIG_SAVE_DIR): os.mkdir(FIG_SAVE_DIR) figure_prefix = paths['external_specimen_name'] + '_' + paths[ 'datestring'] + '_' ### GET FILE PATHS TO SYNC AND PKL FILES ### SYNC_FILE = paths['sync_file'] BEHAVIOR_PKL = paths['behavior_pkl'] REPLAY_PKL = paths['replay_pkl'] MAPPING_PKL = paths['mapping_pkl'] for f, s in zip([SYNC_FILE, BEHAVIOR_PKL, REPLAY_PKL, MAPPING_PKL], ['sync: ', 'behavior: ', 'replay: ', 'mapping: ']): print(s + f) ### GET MAIN DATA STREAMS ### syncDataset = sync_dataset(SYNC_FILE) behavior_data = pd.read_pickle(BEHAVIOR_PKL) mapping_data = pd.read_pickle(MAPPING_PKL) replay_data = pd.read_pickle(REPLAY_PKL) ### Behavior Analysis ### behavior_plot_dir = os.path.join(FIG_SAVE_DIR, 'behavior') trials = behavior_analysis.get_trials_df(behavior_data) behavior_analysis.plot_behavior(trials, behavior_plot_dir, prefix=figure_prefix) trial_types, counts = behavior_analysis.get_trial_counts(trials) behavior_analysis.plot_trial_type_pie(counts, trial_types, behavior_plot_dir, prefix=figure_prefix) ### CHECK FRAME COUNTS ### vr, vf = probeSync.get_sync_line_data(syncDataset, channel=2) behavior_frame_count = behavior_data['items']['behavior'][ 'intervalsms'].size + 1 mapping_frame_count = mapping_data['intervalsms'].size + 1 replay_frame_count = replay_data['intervalsms'].size + 1 total_pkl_frames = (behavior_frame_count + mapping_frame_count + replay_frame_count) ### CHECK THAT NO FRAMES WERE DROPPED FROM SYNC ### print('frames in pkl files: {}'.format(total_pkl_frames)) print('frames in sync file: {}'.format(len(vf))) #assert(total_pkl_frames==len(vf)) ### CHECK THAT REPLAY AND BEHAVIOR HAVE SAME FRAME COUNT ### print('frames in behavior stim: {}'.format(behavior_frame_count)) print('frames in replay stim: {}'.format(replay_frame_count)) #assert(behavior_frame_count==replay_frame_count) # look for potential frame offsets from aborted stims (behavior_start_frame, mapping_start_frame, replay_start_frame) = probeSync.get_frame_offsets( syncDataset, [behavior_frame_count, mapping_frame_count, replay_frame_count]) behavior_end_frame = behavior_start_frame + behavior_frame_count - 1 mapping_end_frame = mapping_start_frame + mapping_frame_count - 1 replay_end_frame = replay_start_frame + replay_frame_count - 1 MONITOR_LAG = 0.036 #TO DO: don't hardcode this... FRAME_APPEAR_TIMES = vf + MONITOR_LAG behavior_start_time, mapping_start_time, replay_start_time = [ FRAME_APPEAR_TIMES[f] for f in [behavior_start_frame, mapping_start_frame, replay_start_frame] ] behavior_end_time, mapping_end_time, replay_end_time = [ FRAME_APPEAR_TIMES[f] for f in [behavior_end_frame, mapping_end_frame, replay_end_frame] ] ### Plot vsync info ### vsync_save_dir = os.path.join(FIG_SAVE_DIR, 'vsyncs') analysis.plot_frame_intervals(vf, behavior_frame_count, mapping_frame_count, behavior_start_frame, mapping_start_frame, replay_start_frame, vsync_save_dir, prefix=figure_prefix) analysis.plot_vsync_interval_histogram(vf, vsync_save_dir, prefix=figure_prefix) analysis.vsync_report(vf, total_pkl_frames, vsync_save_dir, prefix=figure_prefix) ### BUILD UNIT TABLE #### probe_dict = probeSync.build_unit_table(paths['data_probes'], paths, syncDataset) ### Plot Probe Yield QC ### probe_yield_dir = os.path.join(FIG_SAVE_DIR, 'probe_yield') probe_dirs = [paths['probe' + pid] for pid in paths['data_probes']] analysis.plot_unit_quality_hist(probe_dict, probe_yield_dir, prefix=figure_prefix) analysis.plot_unit_distribution_along_probe(probe_dict, probe_yield_dir, prefix=figure_prefix) analysis.plot_all_spike_hist(probe_dict, probe_yield_dir, prefix=figure_prefix + 'good') analysis.copy_probe_depth_images(paths, probe_yield_dir, prefix=figure_prefix) ### Unit Metrics ### unit_metrics_dir = os.path.join(FIG_SAVE_DIR, 'unit_metrics') analysis.plot_unit_metrics(paths, unit_metrics_dir, prefix=figure_prefix) ### Probe/Sync alignment probeSyncDir = os.path.join(FIG_SAVE_DIR, 'probeSyncAlignment') analysis.plot_barcode_interval_hist(probe_dirs, syncDataset, probeSyncDir, prefix=figure_prefix) analysis.plot_barcode_intervals(probe_dirs, syncDataset, probeSyncDir, prefix=figure_prefix) analysis.probe_sync_report(probe_dirs, syncDataset, probeSyncDir, prefix=figure_prefix) analysis.plot_barcode_matches(probe_dirs, syncDataset, probeSyncDir, prefix=figure_prefix) ### Plot visual responses get_RFs(probe_dict, mapping_data, mapping_start_frame, FRAME_APPEAR_TIMES, os.path.join(FIG_SAVE_DIR, 'receptive_fields'), prefix=figure_prefix) analysis.plot_population_change_response(probe_dict, behavior_frame_count, mapping_frame_count, trials, FRAME_APPEAR_TIMES, os.path.join( FIG_SAVE_DIR, 'change_response'), ctx_units_percentile=66, prefix=figure_prefix) ### Plot running ### analysis.plot_running_wheel(behavior_data, mapping_data, replay_data, behavior_plot_dir, prefix=figure_prefix) ### LFP ### lfp_save_dir = os.path.join(FIG_SAVE_DIR, 'LFP') lick_times = analysis.get_rewarded_lick_times( probeSync.get_lick_times(syncDataset), FRAME_APPEAR_TIMES, trials, min_inter_lick_time=0.5) lfp_dict = probeSync.build_lfp_dict(probe_dirs, syncDataset) analysis.plot_lick_triggered_LFP(lfp_dict, lick_times, lfp_save_dir, prefix=figure_prefix, agarChRange=None, num_licks=20, windowBefore=0.5, windowAfter=1.5, min_inter_lick_time=0.5, behavior_duration=3600) ### VIDEOS ### video_dir = os.path.join(FIG_SAVE_DIR, 'videos') analysis.lost_camera_frame_report(paths, video_dir, prefix=figure_prefix) analysis.camera_frame_grabs( paths, syncDataset, video_dir, [behavior_start_time, mapping_start_time, replay_start_time], [behavior_end_time, mapping_end_time, replay_end_time], epoch_frame_nums=[2, 2, 2], prefix=figure_prefix)
REPLAY_PKL = paths['replay_pkl'] MAPPING_PKL = paths['mapping_pkl'] for f, s in zip([SYNC_FILE, BEHAVIOR_PKL, REPLAY_PKL, MAPPING_PKL], ['sync: ', 'behavior: ', 'replay: ', 'mapping: ']): print(s + f) ### GET MAIN DATA STREAMS ### syncDataset = sync_dataset(SYNC_FILE) behavior_data = pd.read_pickle(BEHAVIOR_PKL) mapping_data = pd.read_pickle(MAPPING_PKL) replay_data = pd.read_pickle(REPLAY_PKL) ### Behavior Analysis ### trials = behavior_analysis.get_trials_df(behavior_data) behavior_analysis.plot_behavior(trials, FIG_SAVE_DIR) trial_types, counts = behavior_analysis.get_trial_counts(trials) behavior_analysis.plot_trial_type_pie(counts, trial_types, FIG_SAVE_DIR) ### CHECK FRAME COUNTS ### vr, vf = probeSync.get_sync_line_data(syncDataset, channel=2) behavior_frame_count = behavior_data['items']['behavior'][ 'intervalsms'].size + 1 mapping_frame_count = mapping_data['intervalsms'].size + 1 replay_frame_count = replay_data['intervalsms'].size + 1 total_pkl_frames = (behavior_frame_count + mapping_frame_count + replay_frame_count)