def get_args(parser): args = parser.parse_args() args.power_spectrum_beta_str = args.power_spectrum_beta args.power_spectrum_f_str = args.power_spectrum_f if args.config is not None: with open("./model_configurations.txt") as f: configs = eval(f.read()) cparameters = configs[config] args.n_bins = parameters.get("n_bins", args.n_bins) args.noise_variance = parameters.get("noise_variance", args.noise_variance) args.power_spectrum_beta_str = parameters.get( "power_spectrum_beta", power_spectrum_beta_str ) args.power_spectrum_f_str = parameters.get( "power_spectrum_f", power_spectrum_f_str ) if args.last_id is None: args.last_id = get_benchmark_default_length(args.benchmark) return args
from sklearn.preprocessing import MinMaxScaler import matlab.engine CAUSALITY_ROOT = '/afs/mpa/home/maxk/bayesian_causal_inference/' sys.path.append(CAUSALITY_ROOT) from benchmark_utils import get_benchmark_default_length, get_pair, BCMParser parser = BCMParser() args = parser.parse_args() NAME = args.name BENCHMARK = args.benchmark FIRST_ID = args.first_id LAST_ID = args.last_id if LAST_ID is None: LAST_ID = get_benchmark_default_length(BENCHMARK) eng = matlab.engine.start_matlab() eng.addpath(CAUSALITY_ROOT + 'comparison_methods/Mooij16/cep') eng.startup(nargout=0) eng.local_config(nargout=0) methodpars = eng.struct() methodpars['FITC'] = 0 methodpars['minimize'] = 'minimize_lbfgsb' methodpars['evaluation'] = 'pHSIC' accuracy = 0 correct_decisions = 0 undecided = 0