예제 #1
0
def test_sagemaker_apply_delete_model_fail():
    orig = botocore.client.BaseClient._make_api_call
    yatai_service = create_yatai_service_mock()
    sagemaker_deployment_pb = generate_sagemaker_deployment_pb()
    deployment_operator = SageMakerDeploymentOperator(yatai_service)

    def fail_delete_model(self, operation_name, kwarg):
        if operation_name == 'DeleteModel':
            raise ClientError(
                {
                    'Error': {
                        'Code': 'ValidationException',
                        'Message': 'failed message'
                    }
                },
                'DeleteModel',
            )
        elif operation_name == 'CreateEndpoint':
            raise ClientError({}, 'CreateEndpoint')
        else:
            return orig(self, operation_name, kwarg)

    with patch('botocore.client.BaseClient._make_api_call',
               new=fail_delete_model):
        result = deployment_operator.add(sagemaker_deployment_pb)
    assert result.status.status_code == Status.INTERNAL
    assert result.status.error_message.startswith(
        'Failed to cleanup sagemaker model')
예제 #2
0
def test_sagemaker_apply_delete_model_fail(
    mock_init_project, mock_docker_push, mock_docker_build, mock_check_output
):
    orig = botocore.client.BaseClient._make_api_call
    yatai_service = create_yatai_service_mock()
    sagemaker_deployment_pb = generate_sagemaker_deployment_pb()
    deployment_operator = SageMakerDeploymentOperator()

    def fail_delete_model(self, operation_name, kwarg):
        if operation_name == 'DeleteModel':
            raise ClientError(
                {'Error': {'Code': 'ValidationException', 'Message': 'failed message'}},
                'DeleteModel',
            )
        elif operation_name == 'CreateEndpoint':
            raise ClientError({}, 'CreateEndpoint')
        else:
            return orig(self, operation_name, kwarg)

    with patch('botocore.client.BaseClient._make_api_call', new=fail_delete_model):
        result = deployment_operator.apply(sagemaker_deployment_pb, yatai_service)
    assert result.status.status_code == Status.NOT_FOUND
    assert result.status.error_message.startswith(
        'Failed to clean up model after unsuccessfully'
    )
예제 #3
0
def test_sagemaker_apply_success():
    yatai_service = create_yatai_service_mock()
    sagemaker_deployment_pb = generate_sagemaker_deployment_pb()
    deployment_operator = SageMakerDeploymentOperator(yatai_service)
    result_pb = deployment_operator.add(sagemaker_deployment_pb)
    assert result_pb.status.status_code == Status.OK
    assert result_pb.deployment.name == TEST_DEPLOYMENT_NAME
예제 #4
0
def test_sagemaker_apply_fail_not_local_repo():
    yatai_service = create_yatai_service_mock(repo_storage_type=BentoUri.UNSET)
    sagemaker_deployment_pb = generate_sagemaker_deployment_pb()
    deployment_operator = SageMakerDeploymentOperator(yatai_service)
    result_pb = deployment_operator.add(sagemaker_deployment_pb)
    assert result_pb.status.status_code == Status.INTERNAL
    assert result_pb.status.error_message.startswith(
        'BentoML currently not support')
예제 #5
0
def test_sagemaker_apply_success(
    mock_init_project, mock_docker_push, mock_docker_build, mock_check_output
):
    yatai_service = create_yatai_service_mock()
    sagemaker_deployment_pb = generate_sagemaker_deployment_pb()
    deployment_operator = SageMakerDeploymentOperator()
    result_pb = deployment_operator.apply(sagemaker_deployment_pb, yatai_service)
    assert result_pb.status.status_code == Status.OK
    assert result_pb.deployment.name == TEST_DEPLOYMENT_NAME
예제 #6
0
def test_sagemaker_apply_fail_not_local_repo(
    mock_init_project, mock_docker_push, mock_docker_build, mock_check_output
):
    yatai_service = create_yatai_service_mock(repo_storage_type=BentoUri.UNSET)
    sagemaker_deployment_pb = generate_sagemaker_deployment_pb()
    deployment_operator = SageMakerDeploymentOperator()
    result_pb = deployment_operator.apply(sagemaker_deployment_pb, yatai_service)
    assert result_pb.status.status_code == Status.INTERNAL
    assert result_pb.status.error_message.startswith('BentoML currently not support')
예제 #7
0
def test_sagemaker_update_deployment_with_new_bento_service_tag():
    mocked_yatai_service = create_yatai_service_mock()
    mocked_sagemaker_deployment_pb = generate_sagemaker_deployment_pb()
    deployment_operator = SageMakerDeploymentOperator(mocked_yatai_service)
    deployment_operator.add(mocked_sagemaker_deployment_pb)
    mocked_sagemaker_deployment_pb_with_new_bento_service_tag = (
        generate_sagemaker_deployment_pb())
    mocked_sagemaker_deployment_pb_with_new_bento_service_tag.spec.bento_version = (
        'NEW_BENTO_VERSION')
    update_sagemaker_deployment_result = deployment_operator.update(
        mocked_sagemaker_deployment_pb_with_new_bento_service_tag,
        mocked_sagemaker_deployment_pb,
    )
    assert update_sagemaker_deployment_result.status.status_code == Status.OK
예제 #8
0
파일: operator.py 프로젝트: krtk30/BentoML
def get_deployment_operator(yatai_service, deployment_pb):
    operator = deployment_pb.spec.operator

    if operator == DeploymentSpec.AWS_SAGEMAKER:
        from bentoml.deployment.sagemaker import SageMakerDeploymentOperator

        return SageMakerDeploymentOperator(yatai_service)
    elif operator == DeploymentSpec.AWS_LAMBDA:
        from bentoml.deployment.aws_lambda import AwsLambdaDeploymentOperator

        return AwsLambdaDeploymentOperator(yatai_service)
    elif operator == DeploymentSpec.GCP_FUNCTION:
        raise NotImplementedError(
            "GCP Function deployment operator is not supported in current version of "
            "BentoML")
    elif operator == DeploymentSpec.KUBERNETES:
        raise NotImplementedError(
            "Kubernetes deployment operator is not supported in current version of "
            "BentoML")
    elif operator == DeploymentSpec.CUSTOM:
        raise NotImplementedError(
            "Custom deployment operator is not supported in current version of BentoML"
        )
    else:
        raise YataiDeploymentException("DeployOperator must be set")
예제 #9
0
def test_sagemaker_apply_create_model_fail(
    mock_init_project, mock_docker_push, mock_docker_build, mock_check_output
):
    yatai_service = create_yatai_service_mock()
    sagemaker_deployment_pb = generate_sagemaker_deployment_pb()
    deployment_operator = SageMakerDeploymentOperator()

    orig = botocore.client.BaseClient._make_api_call

    def fail_create_model_random(self, operation_name, kwarg):
        if operation_name == 'CreateModel':
            raise ClientError({'Error': {'Code': 'Random'}}, 'CreateModel')
        else:
            return orig(self, operation_name, kwarg)

    with patch(
        'botocore.client.BaseClient._make_api_call', new=fail_create_model_random
    ):
        failed_result = deployment_operator.apply(
            sagemaker_deployment_pb, yatai_service
        )
    assert failed_result.status.status_code == Status.INTERNAL
    assert failed_result.status.error_message.startswith(
        'Failed to create model for SageMaker Deployment'
    )

    def fail_create_model_validation(self, operation_name, kwarg):
        if operation_name == 'CreateModel':
            raise ClientError(
                {'Error': {'Code': 'ValidationException', 'Message': 'failed message'}},
                'CreateModel',
            )
        else:
            return orig(self, operation_name, kwarg)

    with patch(
        'botocore.client.BaseClient._make_api_call', new=fail_create_model_validation
    ):
        result = deployment_operator.apply(sagemaker_deployment_pb, yatai_service)
    assert result.status.status_code == Status.NOT_FOUND
    assert result.status.error_message.startswith(
        'Failed to create model for SageMaker'
    )
예제 #10
0
def get_deployment_operator(deployment_pb):
    operator = deployment_pb.spec.operator

    if operator == DeploymentOperator.AWS_SAGEMAKER:
        from bentoml.deployment.sagemaker import SageMakerDeploymentOperator

        return SageMakerDeploymentOperator()
    elif operator == DeploymentOperator.AWS_LAMBDA:
        pass
    elif operator == DeploymentOperator.GCP_FUNCTION:
        pass
    elif operator == DeploymentOperator.KUBERNETES:
        pass
    elif operator == DeploymentOperator.CUSTOM:
        pass
    else:
        raise BentoMLDeploymentException("DeployOperator must be set")
예제 #11
0
def get_deployment_operator(deployment_pb):
    operator = deployment_pb.spec.operator

    if operator == deployment_pb2.AWS_SAGEMAKER:
        from bentoml.deployment.sagemaker import SageMakerDeploymentOperator

        return SageMakerDeploymentOperator()
    elif operator == deployment_pb2.AWS_LAMBDA:
        pass
    elif operator == deployment_pb2.GCP_FUNCTION:
        raise NotImplementedError(
            "GCP function deployment operator is not implemented")
    elif operator == deployment_pb2.KUBERNETES:
        raise NotImplementedError(
            "Kubernetes deployment operator is not implemented")
    elif operator == deployment_pb2.CUSTOM:
        raise NotImplementedError(
            "Custom deployment operator is not implemented")
    else:
        raise BentoMLDeploymentException("DeployOperator must be set")
예제 #12
0
def get_deployment_operator(deployment_pb):
    operator = deployment_pb.spec.operator

    if operator == DeploymentSpec.AWS_SAGEMAKER:
        from bentoml.deployment.sagemaker import SageMakerDeploymentOperator

        return SageMakerDeploymentOperator()
    elif operator == DeploymentSpec.AWS_LAMBDA:
        from bentoml.deployment.serverless.aws_lambda import AwsLambdaDeploymentOperator

        return AwsLambdaDeploymentOperator()
    elif operator == DeploymentSpec.GCP_FUNCTION:
        from bentoml.deployment.serverless.gcp_function import (
            GcpFunctionDeploymentOperator, )

        return GcpFunctionDeploymentOperator()
    elif operator == DeploymentSpec.KUBERNETES:
        raise NotImplementedError(
            "Kubernetes deployment operator is not implemented")
    elif operator == DeploymentSpec.CUSTOM:
        raise NotImplementedError(
            "Custom deployment operator is not implemented")
    else:
        raise BentoMLDeploymentException("DeployOperator must be set")
예제 #13
0
def test_sagemaker_apply_duplicate_endpoint():
    orig = botocore.client.BaseClient._make_api_call
    yatai_service = create_yatai_service_mock()
    sagemaker_deployment_pb = generate_sagemaker_deployment_pb()
    deployment_operator = SageMakerDeploymentOperator(yatai_service)
    deployment_operator.add(sagemaker_deployment_pb)

    endpoint_name = '{ns}-{name}'.format(ns=TEST_DEPLOYMENT_NAMESPACE,
                                         name=TEST_DEPLOYMENT_NAME)
    expect_value = 'Endpoint {} already exists'.format(
        endpoint_name.replace('_', '-'))

    def mock_ok_return(self, op_name, kwargs):
        if op_name == 'CreateModel' or op_name == 'CreateEndpointConfig':
            return ''
        else:
            return orig(self, op_name, kwargs)

    with patch('botocore.client.BaseClient._make_api_call',
               new=mock_ok_return):
        with pytest.raises(ValueError) as error:
            deployment_operator.add(sagemaker_deployment_pb)
    assert str(error.value) == expect_value