예제 #1
0
 def basic_loss(self, y_true, y_pred, go_backwards=False):
     """y_true需要是整数形式(非one hot)
     """
     # 导出mask并转换数据类型
     if self.input_mask is None:
         mask = None
     else:
         mask = K.cast(self.input_mask, K.floatx())
     # y_true需要重新明确一下shape和dtype
     y_true = K.reshape(y_true, K.shape(y_pred)[:-1])
     y_true = K.cast(y_true, 'int32')
     # 反转相关
     if self.hidden_dim is None:
         if go_backwards:  # 是否反转序列
             y_true, y_pred = self.reverse_sequence([y_true, y_pred], mask)
             trans = K.transpose(self.trans)
         else:
             trans = self.trans
         histoty = K.gather(trans, y_true)
     else:
         if go_backwards:  # 是否反转序列
             y_true, y_pred = self.reverse_sequence([y_true, y_pred], mask)
             r_trans, l_trans = self.l_trans, self.r_trans
         else:
             l_trans, r_trans = self.l_trans, self.r_trans
         histoty = K.gather(l_trans, y_true)
         histoty = tf.einsum('bnd,kd->bnk', histoty, r_trans)
     # 计算loss
     histoty = K.concatenate([y_pred[:, :1], histoty[:, :-1]], 1)
     y_pred = (y_pred + histoty) / 2
     loss = K.sparse_categorical_crossentropy(y_true, y_pred, from_logits=True)
     if mask is None:
         return K.mean(loss)
     else:
         return K.sum(loss * mask) / K.sum(mask)
예제 #2
0
    def call(self, inputs):
        if not hasattr(self, 'kernel'):
            embedding_layer = search_layer(inputs, self.embedding_name)
            if embedding_layer is None:
                raise Exception('Embedding layer not found')

            self.kernel = K.transpose(embedding_layer.embeddings)
            self.units = K.int_shape(self.kernel)[1]
            if self.use_bias:
                self.bias = self.add_weight(name='bias',
                                            shape=(self.units, ),
                                            initializer='zeros')

        outputs = K.dot(inputs, self.kernel)
        if self.use_bias:
            outputs = K.bias_add(outputs, self.bias)
        outputs = self.activation(outputs)
        return outputs
예제 #3
0
 def basic_accuracy(self, y_true, y_pred, go_backwards=False):
     """训练过程中显示逐帧准确率的函数,排除了mask的影响
     此处y_true需要是整数形式(非one hot)
     """
     # 导出mask并转换数据类型
     if self.input_mask is None:
         mask = None
     else:
         mask = K.cast(self.input_mask, K.floatx())
     # y_true需要重新明确一下shape和dtype
     y_true = K.reshape(y_true, K.shape(y_pred)[:-1])
     y_true = K.cast(y_true, 'int32')
     # 反转相关
     if self.hidden_dim is None:
         if go_backwards:  # 是否反转序列
             y_true, y_pred = self.reverse_sequence([y_true, y_pred], mask)
             trans = K.transpose(self.trans)
         else:
             trans = self.trans
         histoty = K.gather(trans, y_true)
     else:
         if go_backwards:  # 是否反转序列
             y_true, y_pred = self.reverse_sequence([y_true, y_pred], mask)
             r_trans, l_trans = self.l_trans, self.r_trans
         else:
             l_trans, r_trans = self.l_trans, self.r_trans
         histoty = K.gather(l_trans, y_true)
         histoty = tf.einsum('bnd,kd->bnk', histoty, r_trans)
     # 计算逐标签accuracy
     histoty = K.concatenate([y_pred[:, :1], histoty[:, :-1]], 1)
     y_pred = (y_pred + histoty) / 2
     y_pred = K.cast(K.argmax(y_pred, 2), 'int32')
     isequal = K.cast(K.equal(y_true, y_pred), K.floatx())
     if mask is None:
         return K.mean(isequal)
     else:
         return K.sum(isequal * mask) / K.sum(mask)