예제 #1
0
 def test_methods(self):
     calcP.prob_from_sample_set_with_emulated_volumes(self.set_old, self.set_new, self.set_em)
     nptest.assert_almost_equal(self.set_new._probabilities, [0.25, 0.75])
     calcP.prob_from_sample_set(self.set_old, self.set_new)
     nptest.assert_almost_equal(self.set_new._probabilities, [0.25, 0.75])
     disc = samp.discretization(input_sample_set=self.set_old,
                                output_sample_set=self.set_old)
     calcP.prob_from_discretization_input(disc, self.set_new)
     nptest.assert_almost_equal(self.set_new._probabilities, [0.25, 0.75])
     num_em = self.set_em.check_num()
     probs = np.zeros((num_em,))
     probs[0:-1] = 1.0/float(num_em-1)
     self.set_em.set_probabilities(probs)
     self.set_em.global_to_local()
     disc = samp.discretization(input_sample_set=self.set_old,
                                output_sample_set=self.set_old,
                                emulated_input_sample_set=self.set_em)
     calcP.prob_from_discretization_input(disc, self.set_new)
     nptest.assert_almost_equal(self.set_new._probabilities, [0.25, 0.75])
예제 #2
0
 def test_methods(self):
     calcP.prob_from_sample_set_with_emulated_volumes(
         self.set_old, self.set_new, self.set_em)
     nptest.assert_almost_equal(self.set_new._probabilities, [0.25, 0.75])
     calcP.prob_from_sample_set(self.set_old, self.set_new)
     nptest.assert_almost_equal(self.set_new._probabilities, [0.25, 0.75])
     disc = samp.discretization(input_sample_set=self.set_old,
                                output_sample_set=self.set_old)
     calcP.prob_from_discretization_input(disc, self.set_new)
     nptest.assert_almost_equal(self.set_new._probabilities, [0.25, 0.75])
     num_em = self.set_em.check_num()
     probs = np.zeros((num_em, ))
     probs[0:-1] = 1.0 / float(num_em - 1)
     self.set_em.set_probabilities(probs)
     self.set_em.global_to_local()
     disc = samp.discretization(input_sample_set=self.set_old,
                                output_sample_set=self.set_old,
                                emulated_input_sample_set=self.set_em)
     calcP.prob_from_discretization_input(disc, self.set_new)
     nptest.assert_almost_equal(self.set_new._probabilities, [0.25, 0.75])
예제 #3
0
파일: surrogates.py 프로젝트: yangleicq/BET
    def calculate_prob_for_sample_set_region(self,
                                             s_set,
                                             regions,
                                             update_input=True):
        """
        Solves stochastic inverse problem based on surrogate points and the
        MC assumption. Calculates the probability of a regions of input space
        and error estimates for those probabilities.

        :param: s_set: sample set for which to calculate error
        :type s_set: :class:`bet.sample.sample_set_base`
        :param region: list of regions of s_set for which to calculate error
        :type region: list
        :param update_input: whether or not to update probabilities and
            errror identifiers for input discretization
        :type update_input: bool

        :rtype: tuple
        :returns: (probabilities, ``error_estimates``), the probability and
            error estimates for the region
        
        """
        if not hasattr(self, 'surrogate_discretization'):
            msg = "surrogate discretization has not been created"
            raise calculateError.wrong_argument_type(msg)
        if not isinstance(s_set, sample.sample_set_base):
            msg = "s_set must be of type bet.sample.sample_set_base"
            raise calculateError.wrong_argument_type(msg)

        # Calculate probability of region
        if self.surrogate_discretization._input_sample_set._volumes_local\
                is None:
            self.surrogate_discretization._input_sample_set.\
                    estimate_volume_mc(globalize=False)
        calculateP.prob(self.surrogate_discretization, globalize=False)
        prob_new_values = calculateP.prob_from_sample_set(\
                self.surrogate_discretization._input_sample_set, s_set)

        # Calculate for each region
        probabilities = []
        error_estimates = []
        for region in regions:
            marker = np.equal(s_set._region, region)
            probability = np.sum(prob_new_values[marker])

            # Calculate error estimate for region
            model_error = calculateError.model_error(\
                    self.surrogate_discretization)
            error_estimate = model_error.calculate_for_sample_set_region_mc(\
                    s_set, region)
            probabilities.append(probability)
            error_estimates.append(error_estimate)
        # Update input only if 1 region is given
        if update_input:
            num = self.input_disc._input_sample_set.check_num()
            prob = np.zeros((num, ))
            error_id = np.zeros((num, ))
            for i in range(num):
                Itemp = np.equal(self.dummy_disc._emulated_ii_ptr_local, i)
                prob_sum = np.sum(self.surrogate_discretization.\
                        _input_sample_set._probabilities_local[Itemp])
                prob[i] = comm.allreduce(prob_sum, op=MPI.SUM)
                error_id_sum = np.sum(self.surrogate_discretization.\
                        _input_sample_set._error_id_local[Itemp])
                error_id[i] = comm.allreduce(error_id_sum, op=MPI.SUM)
            self.input_disc._input_sample_set.set_probabilities(prob)
            self.input_disc._input_sample_set.set_error_id(error_id)

        return (probabilities, error_estimates)
예제 #4
0
파일: surrogates.py 프로젝트: leiyangcq/BET
    def calculate_prob_for_sample_set_region(self, s_set, 
                                             regions, update_input=True):
        """
        Solves stochastic inverse problem based on surrogate points and the
        MC assumption. Calculates the probability of a regions of input space
        and error estimates for those probabilities.

        :param: s_set: sample set for which to calculate error
        :type s_set: :class:`bet.sample.sample_set_base`
        :param region: list of regions of s_set for which to calculate error
        :type region: list
        :param update_input: whether or not to update probabilities and
            errror identifiers for input discretization
        :type update_input: bool

        :rtype: tuple
        :returns: (probabilities, ``error_estimates``), the probability and
            error estimates for the region
        
        """
        if not hasattr(self, 'surrogate_discretization'):
            msg = "surrogate discretization has not been created"
            raise calculateError.wrong_argument_type(msg)
        if not isinstance(s_set, sample.sample_set_base):
            msg = "s_set must be of type bet.sample.sample_set_base"
            raise calculateError.wrong_argument_type(msg)
            
        # Calculate probability of region 
        if self.surrogate_discretization._input_sample_set._volumes_local\
                is None:
            self.surrogate_discretization._input_sample_set.\
                    estimate_volume_mc(globalize=False)
        calculateP.prob(self.surrogate_discretization, globalize=False)
        prob_new_values = calculateP.prob_from_sample_set(\
                self.surrogate_discretization._input_sample_set, s_set)
        
        # Calculate for each region
        probabilities = []
        error_estimates = []
        for region in regions:
            marker = np.equal(s_set._region, region)
            probability = np.sum(prob_new_values[marker])

            # Calculate error estimate for region
            model_error = calculateError.model_error(\
                    self.surrogate_discretization)
            error_estimate = model_error.calculate_for_sample_set_region_mc(\
                    s_set, region)
            probabilities.append(probability)
            error_estimates.append(error_estimate)
        # Update input only if 1 region is given
        if update_input:
            num = self.input_disc._input_sample_set.check_num()
            prob = np.zeros((num,))
            error_id = np.zeros((num,))
            for i in range(num):
                Itemp = np.equal(self.dummy_disc._emulated_ii_ptr_local, i)
                prob_sum = np.sum(self.surrogate_discretization.\
                        _input_sample_set._probabilities_local[Itemp])
                prob[i] = comm.allreduce(prob_sum, op=MPI.SUM)
                error_id_sum = np.sum(self.surrogate_discretization.\
                        _input_sample_set._error_id_local[Itemp])
                error_id[i] = comm.allreduce(error_id_sum, op=MPI.SUM)
            self.input_disc._input_sample_set.set_probabilities(prob)
            self.input_disc._input_sample_set.set_error_id(error_id)
                    
        return (probabilities, error_estimates)
예제 #5
0
# Set in input space to calculate errors for
s_set = samp.rectangle_sample_set(3)
s_set.setup(maxes=[[0.75, 0.75, 0.75]], mins=[[0.25, 0.25, 0.25]])
s_set.set_region(np.array([0,1]))

# Calculate true probabilty using linear surrogate on true data
sur = surrogates.piecewise_polynomial_surrogate(my_disc_exact)
sur_disc_lin = sur.generate_for_input_set(emulated_inputs, order=1)
(Pt, _) = sur.calculate_prob_for_sample_set_region(s_set, 
                                                         regions=[0])
P_true = Pt[0]
if comm.rank == 0:
    print "True probability: ",  P_true

# Approximate probabilty
P_approx  = calculateP.prob_from_sample_set(my_disc._input_sample_set,
                                             s_set)[0]
if comm.rank == 0:
    print "Approximate probability: ",  P_approx

# Calculate sampling error
samp_er = calculateError.sampling_error(my_disc)
(up, low) = samp_er.calculate_for_sample_set_region(s_set, 
                                                    region=0, emulated_set=emulated_inputs)
if comm.rank == 0:
    print "Sampling error upper bound: ", up
    print "Sampling error lower bound: ", low


# Calculate modeling error
mod_er = calculateError.model_error(my_disc)
er_est = mod_er.calculate_for_sample_set_region(s_set, 
예제 #6
0
# Set in input space to calculate errors for
s_set = samp.rectangle_sample_set(3)
s_set.setup(maxes=[[0.75, 0.75, 0.75]], mins=[[0.25, 0.25, 0.25]])
s_set.set_region(np.array([0, 1]))

# Calculate true probabilty using linear surrogate on true data
sur = surrogates.piecewise_polynomial_surrogate(my_disc_exact)
sur_disc_lin = sur.generate_for_input_set(emulated_inputs, order=1)
(Pt, _) = sur.calculate_prob_for_sample_set_region(s_set, regions=[0])
P_true = Pt[0]
if comm.rank == 0:
    print "True probability: ", P_true

# Approximate probabilty
P_approx = calculateP.prob_from_sample_set(my_disc._input_sample_set, s_set)[0]
if comm.rank == 0:
    print "Approximate probability: ", P_approx

# Calculate sampling error
samp_er = calculateError.sampling_error(my_disc)
(up,
 low) = samp_er.calculate_for_sample_set_region(s_set,
                                                region=0,
                                                emulated_set=emulated_inputs)
if comm.rank == 0:
    print "Sampling error upper bound: ", up
    print "Sampling error lower bound: ", low

# Calculate modeling error
mod_er = calculateError.model_error(my_disc)