def to_symbolic(self): """Convert to a SymPy matrix representing :math:`B(s, t)`. .. note:: This method requires SymPy. .. doctest:: triangle-to-symbolic >>> nodes = np.asfortranarray([ ... [0.0, 0.5, 1.0, -0.5, 0.0, -1.0], ... [0.0, 0.0, 1.0, 0.0, 0.0, 0.0], ... [0.0, 0.0, 0.0, 0.0, 0.0, 1.0], ... ]) >>> triangle = bezier.Triangle(nodes, degree=2) >>> triangle.to_symbolic() Matrix([ [s - t], [ s**2], [ t**2]]) Returns: :class:`sympy.Matrix <sympy.matrices.dense.MutableDenseMatrix>`: The triangle :math:`B(s, t)`. """ _, _, b_polynomial = _symbolic.triangle_as_polynomial( self._nodes, self._degree) return b_polynomial
def _call_function_under_test(nodes, degree): from bezier import _symbolic return _symbolic.triangle_as_polynomial(nodes, degree)