z_from = 0.01 z_to = 0.7 z_step = 0.01 av_from = 0.0 av_to = 2.0 av_step = .1 av_sampling = np.arange(av_from, av_to, av_step) #db_file = 'lib_csp_A.hdf5' db_file = '/home/william/lib_csp_A_sdss_z0p7.hdf5' try: os.unlink(db_file) except: pass db = inithdf5(db_file) # Tables group db.create_group('/tables/') # Filtersystem groups for filterid in db_f.keys(): db.create_group('/%s/' % filterid) # CCD groups for ccd in db_f.get(filterid).keys(): db.create_group('/%s/%s/' % (filterid, ccd)) # 1 - Tables ## 1.1 - redshift db.create_dataset(name = '/tables/z', data = np.arange(z_from, z_to, z_step) ) ## 1.2 - properties
import os import sys import time import h5py import atpy import numpy as np from bgpe.io.readfilterset import readfilterset from bgpe.io.hdf5util import inithdf5 if __name__ == "__main__" and len(sys.argv) > 2: dbfile = sys.argv[1] # Init file db = inithdf5(dbfile) for filter_file in sys.argv[2:]: aux_id = os.path.basename(filter_file).split(".") f = readfilterset() f.read(filter_file) for fid in np.unique(f.filterset["ID_filter"]): dataset = "/%s/%s/%s" % (aux_id[0], aux_id[1], fid) print dataset aux = atpy.Table(name=fid) aux.add_column(name="wl", data=f.filterset["wl"][f.filterset["ID_filter"] == fid]) aux.add_column(name="transm", data=f.filterset["transm"][f.filterset["ID_filter"] == fid]) db.create_dataset(dataset, data=aux.data) db.close()