예제 #1
0
    def __init__(self, data_frame, df_helper, df_context, spark, prediction_narrative, result_setter, meta_parser,
                 mlEnvironment="pyspark"):
        self._metaParser = meta_parser
        self._prediction_narrative = prediction_narrative
        self._result_setter = result_setter
        self._data_frame = data_frame
        self._dataframe_helper = df_helper
        self._dataframe_context = df_context
        self._ignoreMsg = self._dataframe_context.get_message_ignore()
        self._spark = spark
        self._model_summary = MLModelSummary()
        self._score_summary = {}
        self._slug = GLOBALSETTINGS.MODEL_SLUG_MAPPING["sparkmlpclassifier"]
        self._targetLevel = self._dataframe_context.get_target_level_for_model()

        self._completionStatus = self._dataframe_context.get_completion_status()
        self._analysisName = self._slug
        self._messageURL = self._dataframe_context.get_message_url()
        self._scriptWeightDict = self._dataframe_context.get_ml_model_training_weight()
        self._mlEnv = mlEnvironment

        self._scriptStages = {
            "initialization": {
                "summary": "Initialized the Multilayer Perceptron Scripts",
                "weight": 4
            },
            "training": {
                "summary": "Multilayer Perceptron Model Training Started",
                "weight": 2
            },
            "completion": {
                "summary": "Multilayer Perceptron Model Training Finished",
                "weight": 4
            },
        }
 def __init__(self, data_frame, df_helper,df_context, spark, prediction_narrative, result_setter,meta_parser):
     self._metaParser = meta_parser
     self._prediction_narrative = prediction_narrative
     self._result_setter = result_setter
     self._data_frame = data_frame
     self._dataframe_helper = df_helper
     self._dataframe_context = df_context
     self._spark = spark
     self._model_summary = MLModelSummary()
     self._score_summary = {}
     self._slug = GLOBALSETTINGS.MODEL_SLUG_MAPPING["generalizedlinearregression"]
예제 #3
0
    def __init__(self,
                 data_frame,
                 df_helper,
                 df_context,
                 spark,
                 prediction_narrative,
                 result_setter,
                 meta_parser,
                 mlEnvironment="sklearn"):
        self._metaParser = meta_parser
        self._prediction_narrative = prediction_narrative
        self._result_setter = result_setter
        self._data_frame = data_frame
        self._dataframe_helper = df_helper
        self._dataframe_context = df_context
        self._spark = spark
        self._model_summary = MLModelSummary()
        self._score_summary = {}
        self._slug = GLOBALSETTINGS.MODEL_SLUG_MAPPING[
            "Neural Network (TensorFlow)"]
        self._analysisName = "Neural Network (TensorFlow)"
        self._dataframe_context.set_analysis_name(self._analysisName)
        self._mlEnv = mlEnvironment
        self._datasetName = CommonUtils.get_dataset_name(
            self._dataframe_context.CSV_FILE)

        self._completionStatus = self._dataframe_context.get_completion_status(
        )
        print(self._completionStatus, "initial completion status")
        self._messageURL = self._dataframe_context.get_message_url()
        self._scriptWeightDict = self._dataframe_context.get_ml_model_training_weight(
        )
        self._ignoreMsg = self._dataframe_context.get_message_ignore()

        self._scriptStages = {
            "initialization": {
                "summary":
                "Initialized The Neural Network (TensorFlow) Regression Scripts",
                "weight": 1
            },
            "training": {
                "summary":
                "Neural Network (TensorFlow) Regression Model Training Started",
                "weight": 2
            },
            "completion": {
                "summary":
                "Neural Network (TensorFlow) Regression Model Training Finished",
                "weight": 1
            },
        }
    def __init__(self,
                 data_frame,
                 df_helper,
                 df_context,
                 spark,
                 prediction_narrative,
                 result_setter,
                 meta_parser,
                 mLEnvironment="sklearn"):
        self._metaParser = meta_parser
        self._prediction_narrative = prediction_narrative
        self._result_setter = result_setter
        self._data_frame = data_frame
        self._dataframe_helper = df_helper
        self._dataframe_context = df_context
        self._spark = spark
        self._model_summary = MLModelSummary()
        self._score_summary = {}
        self._slug = GLOBALSETTINGS.MODEL_SLUG_MAPPING["gbtregression"]
        self._analysisName = "gbtRegression"
        self._dataframe_context.set_analysis_name(self._analysisName)
        self._mlEnv = mLEnvironment

        self._completionStatus = self._dataframe_context.get_completion_status(
        )
        print self._completionStatus, "initial completion status"
        self._messageURL = self._dataframe_context.get_message_url()
        self._scriptWeightDict = self._dataframe_context.get_ml_model_training_weight(
        )
        self._ignoreMsg = self._dataframe_context.get_message_ignore()

        self._scriptStages = {
            "initialization": {
                "summary":
                "Initialized the Gradient Boosted Tree Regression Scripts",
                "weight": 4
            },
            "training": {
                "summary":
                "Gradient Boosted Tree Regression Model Training Started",
                "weight": 2
            },
            "completion": {
                "summary":
                "Gradient Boosted Tree Regression Model Training Finished",
                "weight": 4
            },
        }
예제 #5
0
    def __init__(self, data_frame, df_helper,df_context, spark, prediction_narrative, result_setter, meta_parser, mlEnvironment="pyspark"):
        self._metaParser = meta_parser
        self._prediction_narrative = prediction_narrative
        self._result_setter = result_setter
        self._data_frame = data_frame
        self._dataframe_helper = df_helper
        self._dataframe_context = df_context
        self._ignoreMsg = self._dataframe_context.get_message_ignore()
        self._spark = spark
        self._model_summary =  MLModelSummary()
        self._score_summary = {}
        self._slug = GLOBALSETTINGS.MODEL_SLUG_MAPPING["xgboost"]
        self._targetLevel = self._dataframe_context.get_target_level_for_model()

        self._completionStatus = self._dataframe_context.get_completion_status()
        print(self._completionStatus,"initial completion status")
        self._analysisName = self._slug
        self._messageURL = self._dataframe_context.get_message_url()
        self._scriptWeightDict = self._dataframe_context.get_ml_model_training_weight()
        self._datasetName = CommonUtils.get_dataset_name(self._dataframe_context.CSV_FILE)
        self._mlEnv = mlEnvironment

        # os.environ['PYSPARK_SUBMIT_ARGS'] = "--jars xgboost4j-spark-0.72.jar,xgboost4j-0.72.jar pyspark-shell"


        self._scriptStages = {
            "initialization":{
                "summary":"Initialized the Xgboost Scripts",
                "weight":4
                },
            "training":{
                "summary":"Xgboost Model Training Started",
                "weight":2
                },
            "completion":{
                "summary":"Xgboost Model Training Finished",
                "weight":4
                },
            }
    def __init__(self, data_frame, df_helper,df_context, spark, prediction_narrative, result_setter, meta_parser, mlEnvironment="pyspark"):
        self._metaParser = meta_parser
        self._prediction_narrative = prediction_narrative
        self._result_setter = result_setter
        self._data_frame = data_frame
        self._dataframe_helper = df_helper
        self._dataframe_context = df_context
        self._ignoreMsg = self._dataframe_context.get_message_ignore()
        self._spark = spark
        self._model_summary =  MLModelSummary()
        self._score_summary = {}
        self._slug = GLOBALSETTINGS.MODEL_SLUG_MAPPING["logisticregression"]
        self._targetLevel = self._dataframe_context.get_target_level_for_model()
        #self._model_summary = {"confusion_matrix":{},"precision_recall_stats":{},"FrequencySummary":{},"ChiSquare":{}}
        self._datasetName = CommonUtils.get_dataset_name(self._dataframe_context.CSV_FILE)
        self._completionStatus = self._dataframe_context.get_completion_status()
        self._analysisName = self._slug
        self._messageURL = self._dataframe_context.get_message_url()
        self._scriptWeightDict = self._dataframe_context.get_ml_model_training_weight()
        self._mlEnv = mlEnvironment
        self._classifier = "lr"

        self._scriptStages = {
            "initialization":{
                "summary":"Initialized the Logistic Regression Scripts",
                "weight":4
                },
            "training":{
                "summary":"Logistic Regression Model Training Started",
                "weight":2
                },
            "completion":{
                "summary":"Logistic Regression Model Training Finished",
                "weight":4
                },
            }
예제 #7
0
    def Train(self):
        st_global = time.time()

        CommonUtils.create_update_and_save_progress_message(
            self._dataframe_context,
            self._scriptWeightDict,
            self._scriptStages,
            self._slug,
            "initialization",
            "info",
            display=True,
            emptyBin=False,
            customMsg=None,
            weightKey="total")

        algosToRun = self._dataframe_context.get_algorithms_to_run()
        algoSetting = [
            x for x in algosToRun if x.get_algorithm_slug() == self._slug
        ][0]
        categorical_columns = self._dataframe_helper.get_string_columns()
        uid_col = self._dataframe_context.get_uid_column()
        if self._metaParser.check_column_isin_ignored_suggestion(uid_col):
            categorical_columns = list(set(categorical_columns) - {uid_col})
        allDateCols = self._dataframe_context.get_date_columns()
        categorical_columns = list(set(categorical_columns) - set(allDateCols))
        print(categorical_columns)
        numerical_columns = self._dataframe_helper.get_numeric_columns()
        result_column = self._dataframe_context.get_result_column()

        model_path = self._dataframe_context.get_model_path()
        if model_path.startswith("file"):
            model_path = model_path[7:]
        validationDict = self._dataframe_context.get_validation_dict()
        print("model_path", model_path)
        pipeline_filepath = "file://" + str(model_path) + "/" + str(
            self._slug) + "/pipeline/"
        model_filepath = "file://" + str(model_path) + "/" + str(
            self._slug) + "/model"
        pmml_filepath = "file://" + str(model_path) + "/" + str(
            self._slug) + "/modelPmml"

        df = self._data_frame
        if self._mlEnv == "spark":
            pass
        elif self._mlEnv == "sklearn":
            model_filepath = model_path + "/" + self._slug + "/model.pkl"
            pmml_filepath = str(model_path) + "/" + str(
                self._slug) + "/traindeModel.pmml"

            x_train, x_test, y_train, y_test = self._dataframe_helper.get_train_test_data(
            )
            x_train = MLUtils.create_dummy_columns(
                x_train,
                [x for x in categorical_columns if x != result_column])
            x_test = MLUtils.create_dummy_columns(
                x_test, [x for x in categorical_columns if x != result_column])
            x_test = MLUtils.fill_missing_columns(x_test, x_train.columns,
                                                  result_column)

            CommonUtils.create_update_and_save_progress_message(
                self._dataframe_context,
                self._scriptWeightDict,
                self._scriptStages,
                self._slug,
                "training",
                "info",
                display=True,
                emptyBin=False,
                customMsg=None,
                weightKey="total")

            st = time.time()
            levels = df[result_column].unique()
            clf = SVC(kernel='linear', probability=True)

            labelEncoder = preprocessing.LabelEncoder()
            labelEncoder.fit(np.concatenate([y_train, y_test]))
            y_train = pd.Series(labelEncoder.transform(y_train))
            y_test = labelEncoder.transform(y_test)
            classes = labelEncoder.classes_
            transformed = labelEncoder.transform(classes)
            labelMapping = dict(list(zip(transformed, classes)))
            inverseLabelMapping = dict(list(zip(classes, transformed)))
            posLabel = inverseLabelMapping[self._targetLevel]
            appType = self._dataframe_context.get_app_type()

            print(appType, labelMapping, inverseLabelMapping, posLabel,
                  self._targetLevel)

            if algoSetting.is_hyperparameter_tuning_enabled():
                hyperParamInitParam = algoSetting.get_hyperparameter_params()
                evaluationMetricDict = {
                    "name": hyperParamInitParam["evaluationMetric"]
                }
                evaluationMetricDict[
                    "displayName"] = GLOBALSETTINGS.SKLEARN_EVAL_METRIC_NAME_DISPLAY_MAP[
                        evaluationMetricDict["name"]]
                hyperParamAlgoName = algoSetting.get_hyperparameter_algo_name()
                params_grid = algoSetting.get_params_dict_hyperparameter()
                params_grid = {
                    k: v
                    for k, v in list(params_grid.items())
                    if k in clf.get_params()
                }
                print(params_grid)
                if hyperParamAlgoName == "gridsearchcv":
                    clfGrid = GridSearchCV(clf, params_grid)
                    gridParams = clfGrid.get_params()
                    hyperParamInitParam = {
                        k: v
                        for k, v in list(hyperParamInitParam.items())
                        if k in gridParams
                    }
                    clfGrid.set_params(**hyperParamInitParam)
                    #clfGrid.fit(x_train,y_train)
                    grid_param = {}
                    grid_param['params'] = ParameterGrid(params_grid)
                    #bestEstimator = clfGrid.best_estimator_
                    modelFilepath = "/".join(model_filepath.split("/")[:-1])
                    sklearnHyperParameterResultObj = SklearnGridSearchResult(
                        grid_param, clf, x_train, x_test, y_train, y_test,
                        appType, modelFilepath, levels, posLabel,
                        evaluationMetricDict)
                    resultArray = sklearnHyperParameterResultObj.train_and_save_models(
                    )
                    self._result_setter.set_hyper_parameter_results(
                        self._slug, resultArray)
                    self._result_setter.set_metadata_parallel_coordinates(
                        self._slug, {
                            "ignoreList":
                            sklearnHyperParameterResultObj.get_ignore_list(),
                            "hideColumns":
                            sklearnHyperParameterResultObj.get_hide_columns(),
                            "metricColName":
                            sklearnHyperParameterResultObj.
                            get_comparison_metric_colname(),
                            "columnOrder":
                            sklearnHyperParameterResultObj.get_keep_columns()
                        })
                elif hyperParamAlgoName == "randomsearchcv":
                    clfRand = RandomizedSearchCV(clf, params_grid)
                    clfRand.set_params(**hyperParamInitParam)
                    bestEstimator = None
            else:
                evaluationMetricDict = {
                    "name":
                    GLOBALSETTINGS.CLASSIFICATION_MODEL_EVALUATION_METRIC
                }
                evaluationMetricDict[
                    "displayName"] = GLOBALSETTINGS.SKLEARN_EVAL_METRIC_NAME_DISPLAY_MAP[
                        evaluationMetricDict["name"]]
                self._result_setter.set_hyper_parameter_results(
                    self._slug, None)
                algoParams = algoSetting.get_params_dict()
                algoParams = {
                    k: v
                    for k, v in list(algoParams.items())
                    if k in list(clf.get_params().keys())
                }
                clf.set_params(**algoParams)
                print("!" * 50)
                print(clf.get_params())
                print("!" * 50)
                if validationDict["name"] == "kFold":
                    defaultSplit = GLOBALSETTINGS.DEFAULT_VALIDATION_OBJECT[
                        "value"]
                    numFold = int(validationDict["value"])
                    if numFold == 0:
                        numFold = 3
                    kFoldClass = SkleanrKFoldResult(
                        numFold,
                        clf,
                        x_train,
                        x_test,
                        y_train,
                        y_test,
                        appType,
                        levels,
                        posLabel,
                        evaluationMetricDict=evaluationMetricDict)
                    kFoldClass.train_and_save_result()
                    kFoldOutput = kFoldClass.get_kfold_result()
                    bestEstimator = kFoldClass.get_best_estimator()
                elif validationDict["name"] == "trainAndtest":
                    clf.fit(x_train, y_train)
                    bestEstimator = clf

            # clf.fit(x_train, y_train)
            # bestEstimator = clf
            trainingTime = time.time() - st
            y_score = bestEstimator.predict(x_test)
            try:
                y_prob = bestEstimator.predict_proba(x_test)
            except:
                y_prob = [0] * len(y_score)

            # overall_precision_recall = MLUtils.calculate_overall_precision_recall(y_test,y_score,targetLevel = self._targetLevel)
            # print overall_precision_recall
            accuracy = metrics.accuracy_score(y_test, y_score)
            if len(levels) <= 2:
                precision = metrics.precision_score(y_test,
                                                    y_score,
                                                    pos_label=posLabel,
                                                    average="binary")
                recall = metrics.recall_score(y_test,
                                              y_score,
                                              pos_label=posLabel,
                                              average="binary")
                auc = metrics.roc_auc_score(y_test, y_score)
            elif len(levels) > 2:
                precision = metrics.precision_score(y_test,
                                                    y_score,
                                                    pos_label=posLabel,
                                                    average="macro")
                recall = metrics.recall_score(y_test,
                                              y_score,
                                              pos_label=posLabel,
                                              average="macro")
                # auc = metrics.roc_auc_score(y_test,y_score,average="weighted")
                auc = None
            y_score = labelEncoder.inverse_transform(y_score)
            y_test = labelEncoder.inverse_transform(y_test)

            featureImportance = {}
            feature_importance = dict(
                sorted(zip(x_train.columns,
                           bestEstimator.feature_importances_),
                       key=lambda x: x[1],
                       reverse=True))
            for k, v in feature_importance.items():
                feature_importance[k] = CommonUtils.round_sig(v)
            objs = {
                "trained_model": bestEstimator,
                "actual": y_test,
                "predicted": y_score,
                "probability": y_prob,
                "feature_importance": feature_importance,
                "featureList": list(x_train.columns),
                "labelMapping": labelMapping
            }

            if not algoSetting.is_hyperparameter_tuning_enabled():
                modelName = "M" + "0" * (GLOBALSETTINGS.MODEL_NAME_MAX_LENGTH -
                                         1) + "1"
                modelFilepathArr = model_filepath.split("/")[:-1]
                modelFilepathArr.append(modelName + ".pkl")
                joblib.dump(objs["trained_model"], "/".join(modelFilepathArr))
            runtime = round((time.time() - st_global), 2)

        try:
            modelPmmlPipeline = PMMLPipeline([("pretrained-estimator",
                                               objs["trained_model"])])
            modelPmmlPipeline.target_field = result_column
            modelPmmlPipeline.active_fields = np.array(
                [col for col in x_train.columns if col != result_column])
            sklearn2pmml(modelPmmlPipeline, pmml_filepath, with_repr=True)
            pmmlfile = open(pmml_filepath, "r")
            pmmlText = pmmlfile.read()
            pmmlfile.close()
            self._result_setter.update_pmml_object({self._slug: pmmlText})
        except:
            pass
        cat_cols = list(set(categorical_columns) - {result_column})
        overall_precision_recall = MLUtils.calculate_overall_precision_recall(
            objs["actual"], objs["predicted"], targetLevel=self._targetLevel)
        self._model_summary = MLModelSummary()
        self._model_summary.set_algorithm_name("Svm")
        self._model_summary.set_algorithm_display_name(
            "Support Vector Machine")
        self._model_summary.set_slug(self._slug)
        self._model_summary.set_training_time(runtime)
        self._model_summary.set_confusion_matrix(
            MLUtils.calculate_confusion_matrix(objs["actual"],
                                               objs["predicted"]))
        self._model_summary.set_feature_importance(objs["feature_importance"])
        self._model_summary.set_feature_list(objs["featureList"])
        self._model_summary.set_model_accuracy(
            round(metrics.accuracy_score(objs["actual"], objs["predicted"]),
                  2))
        self._model_summary.set_training_time(round((time.time() - st), 2))
        self._model_summary.set_precision_recall_stats(
            overall_precision_recall["classwise_stats"])
        self._model_summary.set_model_precision(
            overall_precision_recall["precision"])
        self._model_summary.set_model_recall(
            overall_precision_recall["recall"])
        self._model_summary.set_target_variable(result_column)
        self._model_summary.set_prediction_split(
            overall_precision_recall["prediction_split"])
        self._model_summary.set_validation_method("Train and Test")
        self._model_summary.set_level_map_dict(objs["labelMapping"])
        # self._model_summary.set_model_features(list(set(x_train.columns)-set([result_column])))
        self._model_summary.set_model_features(
            [col for col in x_train.columns if col != result_column])
        self._model_summary.set_level_counts(
            self._metaParser.get_unique_level_dict(
                list(set(categorical_columns))))
        self._model_summary.set_num_trees(100)
        self._model_summary.set_num_rules(300)
        if not algoSetting.is_hyperparameter_tuning_enabled():
            modelDropDownObj = {
                "name": self._model_summary.get_algorithm_name(),
                "evaluationMetricValue":
                self._model_summary.get_model_accuracy(),
                "evaluationMetricName": "accuracy",
                "slug": self._model_summary.get_slug(),
                "Model Id": modelName
            }

            modelSummaryJson = {
                "dropdown": modelDropDownObj,
                "levelcount": self._model_summary.get_level_counts(),
                "modelFeatureList": self._model_summary.get_feature_list(),
                "levelMapping": self._model_summary.get_level_map_dict(),
                "slug": self._model_summary.get_slug(),
                "name": self._model_summary.get_algorithm_name()
            }
        else:
            modelDropDownObj = {
                "name": self._model_summary.get_algorithm_name(),
                "evaluationMetricValue": resultArray[0]["Accuracy"],
                "evaluationMetricName": "accuracy",
                "slug": self._model_summary.get_slug(),
                "Model Id": resultArray[0]["Model Id"]
            }
            modelSummaryJson = {
                "dropdown": modelDropDownObj,
                "levelcount": self._model_summary.get_level_counts(),
                "modelFeatureList": self._model_summary.get_feature_list(),
                "levelMapping": self._model_summary.get_level_map_dict(),
                "slug": self._model_summary.get_slug(),
                "name": self._model_summary.get_algorithm_name()
            }

        svmCards = [
            json.loads(CommonUtils.convert_python_object_to_json(cardObj)) for
            cardObj in MLUtils.create_model_summary_cards(self._model_summary)
        ]
        for card in svmCards:
            self._prediction_narrative.add_a_card(card)

        self._result_setter.set_model_summary({
            "svm":
            json.loads(
                CommonUtils.convert_python_object_to_json(self._model_summary))
        })
        self._result_setter.set_svm_model_summary(modelSummaryJson)
        self._result_setter.set_rf_cards(svmCards)

        CommonUtils.create_update_and_save_progress_message(
            self._dataframe_context,
            self._scriptWeightDict,
            self._scriptStages,
            self._slug,
            "completion",
            "info",
            display=True,
            emptyBin=False,
            customMsg=None,
            weightKey="total")
    def Train(self):
        st_global = time.time()

        CommonUtils.create_update_and_save_progress_message(
            self._dataframe_context,
            self._scriptWeightDict,
            self._scriptStages,
            self._slug,
            "initialization",
            "info",
            display=True,
            emptyBin=False,
            customMsg=None,
            weightKey="total")

        algosToRun = self._dataframe_context.get_algorithms_to_run()
        algoSetting = [
            x for x in algosToRun if x.get_algorithm_slug() == self._slug
        ][0]
        categorical_columns = self._dataframe_helper.get_string_columns()
        uid_col = self._dataframe_context.get_uid_column()

        if self._metaParser.check_column_isin_ignored_suggestion(uid_col):
            categorical_columns = list(set(categorical_columns) - {uid_col})

        allDateCols = self._dataframe_context.get_date_columns()
        categorical_columns = list(set(categorical_columns) - set(allDateCols))
        numerical_columns = self._dataframe_helper.get_numeric_columns()
        result_column = self._dataframe_context.get_result_column()
        categorical_columns = [
            x for x in categorical_columns if x != result_column
        ]

        appType = self._dataframe_context.get_app_type()

        model_path = self._dataframe_context.get_model_path()
        if model_path.startswith("file"):
            model_path = model_path[7:]
        validationDict = self._dataframe_context.get_validation_dict()
        print("model_path", model_path)
        pipeline_filepath = "file://" + str(model_path) + "/" + str(
            self._slug) + "/pipeline/"
        model_filepath = "file://" + str(model_path) + "/" + str(
            self._slug) + "/model"
        pmml_filepath = "file://" + str(model_path) + "/" + str(
            self._slug) + "/modelPmml"

        df = self._data_frame
        levels = df.select(result_column).distinct().count()

        appType = self._dataframe_context.get_app_type()

        model_filepath = model_path + "/" + self._slug + "/model"
        pmml_filepath = str(model_path) + "/" + str(
            self._slug) + "/traindeModel.pmml"

        CommonUtils.create_update_and_save_progress_message(
            self._dataframe_context,
            self._scriptWeightDict,
            self._scriptStages,
            self._slug,
            "training",
            "info",
            display=True,
            emptyBin=False,
            customMsg=None,
            weightKey="total")

        st = time.time()
        pipeline = MLUtils.create_pyspark_ml_pipeline(numerical_columns,
                                                      categorical_columns,
                                                      result_column)

        trainingData, validationData = MLUtils.get_training_and_validation_data(
            df, result_column, 0.8)  # indexed

        labelIndexer = StringIndexer(inputCol=result_column, outputCol="label")
        # OriginalTargetconverter = IndexToString(inputCol="label", outputCol="originalTargetColumn")

        # Label Mapping and Inverse
        labelIdx = labelIndexer.fit(trainingData)
        labelMapping = {k: v for k, v in enumerate(labelIdx.labels)}
        inverseLabelMapping = {
            v: float(k)
            for k, v in enumerate(labelIdx.labels)
        }
        if self._dataframe_context.get_trainerMode() == "autoML":
            automl_enable = True
        else:
            automl_enable = False
        clf = NaiveBayes()
        if not algoSetting.is_hyperparameter_tuning_enabled():
            algoParams = algoSetting.get_params_dict()
        else:
            algoParams = algoSetting.get_params_dict_hyperparameter()
        print("=" * 100)
        print(algoParams)
        print("=" * 100)
        clfParams = [prm.name for prm in clf.params]
        algoParams = {
            getattr(clf, k): v if isinstance(v, list) else [v]
            for k, v in algoParams.items() if k in clfParams
        }
        #print("="*100)
        #print("ALGOPARAMS - ",algoParams)
        #print("="*100)

        paramGrid = ParamGridBuilder()
        # if not algoSetting.is_hyperparameter_tuning_enabled():
        #     for k,v in algoParams.items():
        #         if v == [None] * len(v):
        #             continue
        #         if k.name == 'thresholds':
        #             paramGrid = paramGrid.addGrid(k,v[0])
        #         else:
        #             paramGrid = paramGrid.addGrid(k,v)
        #     paramGrid = paramGrid.build()

        # if not algoSetting.is_hyperparameter_tuning_enabled():
        for k, v in algoParams.items():
            print(k, v)
            if v == [None] * len(v):
                continue
            paramGrid = paramGrid.addGrid(k, v)
        paramGrid = paramGrid.build()
        # else:
        #     for k,v in algoParams.items():
        #         print k.name, v
        #         if v[0] == [None] * len(v[0]):
        #             continue
        #         paramGrid = paramGrid.addGrid(k,v[0])
        #     paramGrid = paramGrid.build()

        #print("="*143)
        #print("PARAMGRID - ", paramGrid)
        #print("="*143)

        if len(paramGrid) > 1:
            hyperParamInitParam = algoSetting.get_hyperparameter_params()
            evaluationMetricDict = {
                "name": hyperParamInitParam["evaluationMetric"]
            }
            evaluationMetricDict[
                "displayName"] = GLOBALSETTINGS.SKLEARN_EVAL_METRIC_NAME_DISPLAY_MAP[
                    evaluationMetricDict["name"]]
        else:
            evaluationMetricDict = {
                "name": GLOBALSETTINGS.CLASSIFICATION_MODEL_EVALUATION_METRIC
            }
            evaluationMetricDict[
                "displayName"] = GLOBALSETTINGS.SKLEARN_EVAL_METRIC_NAME_DISPLAY_MAP[
                    evaluationMetricDict["name"]]

        self._result_setter.set_hyper_parameter_results(self._slug, None)

        if validationDict["name"] == "kFold":
            numFold = int(validationDict["value"])
            estimator = Pipeline(stages=[pipeline, labelIndexer, clf])
            if algoSetting.is_hyperparameter_tuning_enabled():
                modelFilepath = "/".join(model_filepath.split("/")[:-1])
                pySparkHyperParameterResultObj = PySparkGridSearchResult(
                    estimator, paramGrid, appType, modelFilepath, levels,
                    evaluationMetricDict, trainingData, validationData,
                    numFold, self._targetLevel, labelMapping,
                    inverseLabelMapping, df)
                resultArray = pySparkHyperParameterResultObj.train_and_save_classification_models(
                )
                self._result_setter.set_hyper_parameter_results(
                    self._slug, resultArray)
                self._result_setter.set_metadata_parallel_coordinates(
                    self._slug, {
                        "ignoreList":
                        pySparkHyperParameterResultObj.get_ignore_list(),
                        "hideColumns":
                        pySparkHyperParameterResultObj.get_hide_columns(),
                        "metricColName":
                        pySparkHyperParameterResultObj.
                        get_comparison_metric_colname(),
                        "columnOrder":
                        pySparkHyperParameterResultObj.get_keep_columns()
                    })

                bestModel = pySparkHyperParameterResultObj.getBestModel()
                prediction = pySparkHyperParameterResultObj.getBestPrediction()

            else:
                if automl_enable:
                    paramGrid = (ParamGridBuilder().addGrid(
                        clf.smoothing, [1.0, 0.2]).build())
                crossval = CrossValidator(
                    estimator=estimator,
                    estimatorParamMaps=paramGrid,
                    evaluator=BinaryClassificationEvaluator()
                    if levels == 2 else MulticlassClassificationEvaluator(),
                    numFolds=3 if numFold is None else
                    numFold)  # use 3+ folds in practice
                cvnb = crossval.fit(trainingData)
                prediction = cvnb.transform(validationData)
                bestModel = cvnb.bestModel

        else:
            train_test_ratio = float(
                self._dataframe_context.get_train_test_split())
            estimator = Pipeline(stages=[pipeline, labelIndexer, clf])
            if algoSetting.is_hyperparameter_tuning_enabled():
                modelFilepath = "/".join(model_filepath.split("/")[:-1])
                pySparkHyperParameterResultObj = PySparkTrainTestResult(
                    estimator, paramGrid, appType, modelFilepath, levels,
                    evaluationMetricDict, trainingData, validationData,
                    train_test_ratio, self._targetLevel, labelMapping,
                    inverseLabelMapping, df)
                resultArray = pySparkHyperParameterResultObj.train_and_save_classification_models(
                )
                self._result_setter.set_hyper_parameter_results(
                    self._slug, resultArray)
                self._result_setter.set_metadata_parallel_coordinates(
                    self._slug, {
                        "ignoreList":
                        pySparkHyperParameterResultObj.get_ignore_list(),
                        "hideColumns":
                        pySparkHyperParameterResultObj.get_hide_columns(),
                        "metricColName":
                        pySparkHyperParameterResultObj.
                        get_comparison_metric_colname(),
                        "columnOrder":
                        pySparkHyperParameterResultObj.get_keep_columns()
                    })

                bestModel = pySparkHyperParameterResultObj.getBestModel()
                prediction = pySparkHyperParameterResultObj.getBestPrediction()

            else:
                tvs = TrainValidationSplit(
                    estimator=estimator,
                    estimatorParamMaps=paramGrid,
                    evaluator=BinaryClassificationEvaluator()
                    if levels == 2 else MulticlassClassificationEvaluator(),
                    trainRatio=train_test_ratio)

                tvspnb = tvs.fit(trainingData)
                prediction = tvspnb.transform(validationData)
                bestModel = tvspnb.bestModel

        modelmanagement_ = {
            param[0].name: param[1]
            for param in bestModel.stages[2].extractParamMap().items()
        }

        MLUtils.save_pipeline_or_model(bestModel, model_filepath)
        predsAndLabels = prediction.select(['prediction',
                                            'label']).rdd.map(tuple)
        # label_classes = prediction.select("label").distinct().collect()
        # label_classes = prediction.agg((F.collect_set('label').alias('label'))).first().asDict()['label']
        #results = transformed.select(["prediction","label"])
        # if len(label_classes) > 2:
        #     metrics = MulticlassMetrics(predsAndLabels) # accuracy of the model
        # else:
        #     metrics = BinaryClassificationMetrics(predsAndLabels)
        posLabel = inverseLabelMapping[self._targetLevel]
        metrics = MulticlassMetrics(predsAndLabels)

        trainingTime = time.time() - st

        f1_score = metrics.fMeasure(inverseLabelMapping[self._targetLevel],
                                    1.0)
        precision = metrics.precision(inverseLabelMapping[self._targetLevel])
        recall = metrics.recall(inverseLabelMapping[self._targetLevel])
        accuracy = metrics.accuracy

        print(f1_score, precision, recall, accuracy)

        #gain chart implementation
        def cal_prob_eval(x):
            if len(x) == 1:
                if x == posLabel:
                    return (float(x[1]))
                else:
                    return (float(1 - x[1]))
            else:
                return (float(x[int(posLabel)]))

        column_name = 'probability'

        def y_prob_for_eval_udf():
            return udf(lambda x: cal_prob_eval(x))

        prediction = prediction.withColumn(
            "y_prob_for_eval",
            y_prob_for_eval_udf()(col(column_name)))

        try:
            pys_df = prediction.select(
                ['y_prob_for_eval', 'prediction', 'label'])
            gain_lift_ks_obj = GainLiftKS(pys_df, 'y_prob_for_eval',
                                          'prediction', 'label', posLabel,
                                          self._spark)
            gain_lift_KS_dataframe = gain_lift_ks_obj.Run().toPandas()
        except:
            try:
                temp_df = pys_df.toPandas()
                gain_lift_ks_obj = GainLiftKS(temp_df, 'y_prob_for_eval',
                                              'prediction', 'label', posLabel,
                                              self._spark)
                gain_lift_KS_dataframe = gain_lift_ks_obj.Rank_Ordering()
            except:
                print("gain chant failed")
                gain_lift_KS_dataframe = None

        #feature_importance = MLUtils.calculate_sparkml_feature_importance(df, bestModel.stages[-1], categorical_columns, numerical_columns)
        act_list = prediction.select('label').collect()
        actual = [int(row.label) for row in act_list]

        pred_list = prediction.select('prediction').collect()
        predicted = [int(row.prediction) for row in pred_list]
        prob_list = prediction.select('probability').collect()
        probability = [list(row.probability) for row in prob_list]
        # objs = {"trained_model":bestModel,"actual":prediction.select('label'),"predicted":prediction.select('prediction'),
        # "probability":prediction.select('probability'),"feature_importance":None,
        # "featureList":list(categorical_columns) + list(numerical_columns),"labelMapping":labelMapping}
        objs = {
            "trained_model": bestModel,
            "actual": actual,
            "predicted": predicted,
            "probability": probability,
            "feature_importance": None,
            "featureList": list(categorical_columns) + list(numerical_columns),
            "labelMapping": labelMapping
        }

        conf_mat_ar = metrics.confusionMatrix().toArray()
        print(conf_mat_ar)
        confusion_matrix = {}
        for i in range(len(conf_mat_ar)):
            confusion_matrix[labelMapping[i]] = {}
            for j, val in enumerate(conf_mat_ar[i]):
                confusion_matrix[labelMapping[i]][labelMapping[j]] = val
        print(confusion_matrix)  # accuracy of the model
        '''ROC CURVE IMPLEMENTATION'''
        y_prob = probability
        y_score = predicted
        y_test = actual
        logLoss = log_loss(y_test, y_prob)
        if levels <= 2:
            positive_label_probs = []
            for val in y_prob:
                positive_label_probs.append(val[int(posLabel)])
            roc_auc = roc_auc_score(y_test, y_score)

            roc_data_dict = {
                "y_score": y_score,
                "y_test": y_test,
                "positive_label_probs": positive_label_probs,
                "y_prob": y_prob,
                "positive_label": posLabel
            }
            roc_dataframe = pd.DataFrame({
                "y_score":
                y_score,
                "y_test":
                y_test,
                "positive_label_probs":
                positive_label_probs
            })
            #roc_dataframe.to_csv("binary_roc_data.csv")
            fpr, tpr, thresholds = roc_curve(y_test,
                                             positive_label_probs,
                                             pos_label=posLabel)
            roc_df = pd.DataFrame({
                "FPR": fpr,
                "TPR": tpr,
                "thresholds": thresholds
            })
            roc_df["tpr-fpr"] = roc_df["TPR"] - roc_df["FPR"]

            optimal_index = np.argmax(np.array(roc_df["tpr-fpr"]))
            fpr_optimal_index = roc_df.loc[roc_df.index[optimal_index], "FPR"]
            tpr_optimal_index = roc_df.loc[roc_df.index[optimal_index], "TPR"]

            rounded_roc_df = roc_df.round({'FPR': 2, 'TPR': 4})

            unique_fpr = rounded_roc_df["FPR"].unique()

            final_roc_df = rounded_roc_df.groupby("FPR",
                                                  as_index=False)[["TPR"
                                                                   ]].mean()
            endgame_roc_df = final_roc_df.round({'FPR': 2, 'TPR': 3})
        elif levels > 2:
            positive_label_probs = []
            for val in y_prob:
                positive_label_probs.append(val[int(posLabel)])

            y_test_roc_multi = []
            for val in y_test:
                if val != posLabel:
                    val = posLabel + 1
                    y_test_roc_multi.append(val)
                else:
                    y_test_roc_multi.append(val)

            y_score_roc_multi = []
            for val in y_score:
                if val != posLabel:
                    val = posLabel + 1
                    y_score_roc_multi.append(val)
                else:
                    y_score_roc_multi.append(val)

            roc_auc = roc_auc_score(y_test_roc_multi, y_score_roc_multi)

            fpr, tpr, thresholds = roc_curve(y_test_roc_multi,
                                             positive_label_probs,
                                             pos_label=posLabel)
            roc_df = pd.DataFrame({
                "FPR": fpr,
                "TPR": tpr,
                "thresholds": thresholds
            })
            roc_df["tpr-fpr"] = roc_df["TPR"] - roc_df["FPR"]

            optimal_index = np.argmax(np.array(roc_df["tpr-fpr"]))
            fpr_optimal_index = roc_df.loc[roc_df.index[optimal_index], "FPR"]
            tpr_optimal_index = roc_df.loc[roc_df.index[optimal_index], "TPR"]

            rounded_roc_df = roc_df.round({'FPR': 2, 'TPR': 4})
            unique_fpr = rounded_roc_df["FPR"].unique()
            final_roc_df = rounded_roc_df.groupby("FPR",
                                                  as_index=False)[["TPR"
                                                                   ]].mean()
            endgame_roc_df = final_roc_df.round({'FPR': 2, 'TPR': 3})
        # Calculating prediction_split
        val_cnts = prediction.groupBy('label').count()
        val_cnts = map(lambda row: row.asDict(), val_cnts.collect())
        prediction_split = {}
        total_nos = prediction.select('label').count()
        for item in val_cnts:
            print(labelMapping)
            classname = labelMapping[item['label']]
            prediction_split[classname] = round(
                item['count'] * 100 / float(total_nos), 2)

        if not algoSetting.is_hyperparameter_tuning_enabled():
            modelName = "M" + "0" * (GLOBALSETTINGS.MODEL_NAME_MAX_LENGTH -
                                     1) + "1"
            modelFilepathArr = model_filepath.split("/")[:-1]
            modelFilepathArr.append(modelName)
            bestModel.save("/".join(modelFilepathArr))
        runtime = round((time.time() - st_global), 2)

        try:
            print(pmml_filepath)
            pmmlBuilder = PMMLBuilder(self._spark, trainingData,
                                      bestModel).putOption(
                                          clf, 'compact', True)
            pmmlBuilder.buildFile(pmml_filepath)
            pmmlfile = open(pmml_filepath, "r")
            pmmlText = pmmlfile.read()
            pmmlfile.close()
            self._result_setter.update_pmml_object({self._slug: pmmlText})
        except Exception as e:
            print("PMML failed...", str(e))
            pass

        cat_cols = list(set(categorical_columns) - {result_column})
        self._model_summary = MLModelSummary()
        self._model_summary.set_algorithm_name("Naive Bayes")
        self._model_summary.set_algorithm_display_name("Naive Bayes")
        self._model_summary.set_slug(self._slug)
        self._model_summary.set_training_time(runtime)
        self._model_summary.set_confusion_matrix(confusion_matrix)
        # self._model_summary.set_feature_importance(objs["feature_importance"])
        self._model_summary.set_feature_list(objs["featureList"])
        self._model_summary.set_model_accuracy(accuracy)
        self._model_summary.set_training_time(round((time.time() - st), 2))
        self._model_summary.set_precision_recall_stats([precision, recall])
        self._model_summary.set_model_precision(precision)
        self._model_summary.set_model_recall(recall)
        self._model_summary.set_model_F1_score(f1_score)
        self._model_summary.set_model_log_loss(logLoss)
        self._model_summary.set_gain_lift_KS_data(gain_lift_KS_dataframe)
        self._model_summary.set_AUC_score(roc_auc)
        self._model_summary.set_target_variable(result_column)
        self._model_summary.set_prediction_split(prediction_split)
        self._model_summary.set_validation_method("KFold")
        self._model_summary.set_level_map_dict(objs["labelMapping"])
        # self._model_summary.set_model_features(list(set(x_train.columns)-set([result_column])))
        self._model_summary.set_model_features(objs["featureList"])
        self._model_summary.set_level_counts(
            self._metaParser.get_unique_level_dict(
                list(set(categorical_columns)) + [result_column]))
        #self._model_summary.set_num_trees(objs['trained_model'].getNumTrees)
        self._model_summary.set_num_rules(300)
        self._model_summary.set_target_level(self._targetLevel)

        if not algoSetting.is_hyperparameter_tuning_enabled():
            modelDropDownObj = {
                "name": self._model_summary.get_algorithm_name(),
                "evaluationMetricValue": accuracy,
                "evaluationMetricName": "accuracy",
                "slug": self._model_summary.get_slug(),
                "Model Id": modelName
            }
            modelSummaryJson = {
                "dropdown": modelDropDownObj,
                "levelcount": self._model_summary.get_level_counts(),
                "modelFeatureList": self._model_summary.get_feature_list(),
                "levelMapping": self._model_summary.get_level_map_dict(),
                "slug": self._model_summary.get_slug(),
                "name": self._model_summary.get_algorithm_name()
            }
        else:
            modelDropDownObj = {
                "name": self._model_summary.get_algorithm_name(),
                "evaluationMetricValue": accuracy,
                "evaluationMetricName": "accuracy",
                "slug": self._model_summary.get_slug(),
                "Model Id": resultArray[0]["Model Id"]
            }
            modelSummaryJson = {
                "dropdown": modelDropDownObj,
                "levelcount": self._model_summary.get_level_counts(),
                "modelFeatureList": self._model_summary.get_feature_list(),
                "levelMapping": self._model_summary.get_level_map_dict(),
                "slug": self._model_summary.get_slug(),
                "name": self._model_summary.get_algorithm_name()
            }
        self._model_management = MLModelSummary()
        print(modelmanagement_)
        self._model_management.set_job_type(
            self._dataframe_context.get_job_name())  #Project name
        self._model_management.set_training_status(
            data="completed")  # training status
        self._model_management.set_target_level(
            self._targetLevel)  # target column value
        self._model_management.set_training_time(runtime)  # run time
        self._model_management.set_model_accuracy(round(metrics.accuracy, 2))
        # self._model_management.set_model_accuracy(round(metrics.accuracy_score(objs["actual"], objs["predicted"]),2))#accuracy
        self._model_management.set_algorithm_name(
            "NaiveBayes")  #algorithm name
        self._model_management.set_validation_method(
            str(validationDict["displayName"]) + "(" +
            str(validationDict["value"]) + ")")  #validation method
        self._model_management.set_target_variable(
            result_column)  #target column name
        self._model_management.set_creation_date(data=str(
            datetime.now().strftime('%b %d ,%Y  %H:%M ')))  #creation date
        self._model_management.set_datasetName(self._datasetName)
        self._model_management.set_model_type(data='classification')
        self._model_management.set_var_smoothing(
            data=int(modelmanagement_['smoothing']))

        # self._model_management.set_no_of_independent_variables(df) #no of independent varables

        modelManagementSummaryJson = [
            ["Project Name",
             self._model_management.get_job_type()],
            ["Algorithm",
             self._model_management.get_algorithm_name()],
            ["Training Status",
             self._model_management.get_training_status()],
            ["Accuracy",
             self._model_management.get_model_accuracy()],
            ["RunTime", self._model_management.get_training_time()],
            #["Owner",None],
            ["Created On",
             self._model_management.get_creation_date()]
        ]

        modelManagementModelSettingsJson = [
            ["Training Dataset",
             self._model_management.get_datasetName()],
            ["Target Column",
             self._model_management.get_target_variable()],
            ["Target Column Value",
             self._model_management.get_target_level()],
            ["Algorithm",
             self._model_management.get_algorithm_name()],
            [
                "Model Validation",
                self._model_management.get_validation_method()
            ],
            ["Model Type",
             self._model_management.get_model_type()],
            ["Smoothing",
             self._model_management.get_var_smoothing()],

            #,["priors",self._model_management.get_priors()]
            #,["var_smoothing",self._model_management.get_var_smoothing()]
        ]

        nbOverviewCards = [
            json.loads(CommonUtils.convert_python_object_to_json(cardObj))
            for cardObj in MLUtils.create_model_management_card_overview(
                self._model_management, modelManagementSummaryJson,
                modelManagementModelSettingsJson)
        ]
        nbPerformanceCards = [
            json.loads(CommonUtils.convert_python_object_to_json(cardObj))
            for cardObj in MLUtils.create_model_management_cards(
                self._model_summary, endgame_roc_df)
        ]
        nbDeploymentCards = [
            json.loads(CommonUtils.convert_python_object_to_json(cardObj))
            for cardObj in MLUtils.create_model_management_deploy_empty_card()
        ]
        nbCards = [
            json.loads(CommonUtils.convert_python_object_to_json(cardObj)) for
            cardObj in MLUtils.create_model_summary_cards(self._model_summary)
        ]
        NB_Overview_Node = NarrativesTree()
        NB_Overview_Node.set_name("Overview")
        NB_Performance_Node = NarrativesTree()
        NB_Performance_Node.set_name("Performance")
        NB_Deployment_Node = NarrativesTree()
        NB_Deployment_Node.set_name("Deployment")
        for card in nbOverviewCards:
            NB_Overview_Node.add_a_card(card)
        for card in nbPerformanceCards:
            NB_Performance_Node.add_a_card(card)
        for card in nbDeploymentCards:
            NB_Deployment_Node.add_a_card(card)
        for card in nbCards:
            self._prediction_narrative.add_a_card(card)

        self._result_setter.set_model_summary({
            "naivebayes":
            json.loads(
                CommonUtils.convert_python_object_to_json(self._model_summary))
        })
        self._result_setter.set_naive_bayes_model_summary(modelSummaryJson)
        self._result_setter.set_nb_cards(nbCards)
        self._result_setter.set_nb_nodes(
            [NB_Overview_Node, NB_Performance_Node, NB_Deployment_Node])
        self._result_setter.set_nb_fail_card({
            "Algorithm_Name": "Naive Bayes",
            "success": "True"
        })

        CommonUtils.create_update_and_save_progress_message(
            self._dataframe_context,
            self._scriptWeightDict,
            self._scriptStages,
            self._slug,
            "completion",
            "info",
            display=True,
            emptyBin=False,
            customMsg=None,
            weightKey="total")

        print("\n\n")
예제 #9
0
    def Train(self):
        st_global = time.time()

        CommonUtils.create_update_and_save_progress_message(
            self._dataframe_context,
            self._scriptWeightDict,
            self._scriptStages,
            self._slug,
            "initialization",
            "info",
            display=True,
            emptyBin=False,
            customMsg=None,
            weightKey="total")
        appType = self._dataframe_context.get_app_type()
        algosToRun = self._dataframe_context.get_algorithms_to_run()
        algoSetting = [
            x for x in algosToRun if x.get_algorithm_slug() == self._slug
        ][0]
        categorical_columns = self._dataframe_helper.get_string_columns()
        uid_col = self._dataframe_context.get_uid_column()
        if self._metaParser.check_column_isin_ignored_suggestion(uid_col):
            categorical_columns = list(set(categorical_columns) - {uid_col})
        allDateCols = self._dataframe_context.get_date_columns()
        categorical_columns = list(set(categorical_columns) - set(allDateCols))
        print("CATEGORICAL COLS - ", categorical_columns)
        result_column = self._dataframe_context.get_result_column()
        numerical_columns = self._dataframe_helper.get_numeric_columns()
        numerical_columns = [
            x for x in numerical_columns if x != result_column
        ]

        model_path = self._dataframe_context.get_model_path()
        if model_path.startswith("file"):
            model_path = model_path[7:]
        validationDict = self._dataframe_context.get_validation_dict()
        print("model_path", model_path)
        pipeline_filepath = "file://" + str(model_path) + "/" + str(
            self._slug) + "/pipeline/"
        model_filepath = "file://" + str(model_path) + "/" + str(
            self._slug) + "/model"
        pmml_filepath = "file://" + str(model_path) + "/" + str(
            self._slug) + "/modelPmml"

        df = self._data_frame
        if self._mlEnv == "spark":
            pass
        elif self._mlEnv == "sklearn":
            model_filepath = model_path + "/" + self._slug + "/model.pkl"

            x_train, x_test, y_train, y_test = self._dataframe_helper.get_train_test_data(
            )
            x_train = MLUtils.create_dummy_columns(
                x_train,
                [x for x in categorical_columns if x != result_column])
            x_test = MLUtils.create_dummy_columns(
                x_test, [x for x in categorical_columns if x != result_column])
            x_test = MLUtils.fill_missing_columns(x_test, x_train.columns,
                                                  result_column)

            print("=" * 150)
            print("X-Train Shape - ", x_train.shape)
            print("Y-Train Shape - ", y_train.shape)
            print("X-Test Shape - ", x_test.shape)
            print("Y-Test Shape - ", y_test.shape)
            print("~" * 50)
            print("X-Train dtype - ", type(x_train))
            print("Y-Train dtype - ", type(y_train))
            print("X-Test dtype - ", type(x_test))
            print("Y-Test dtype - ", type(y_test))
            print("~" * 50)

            CommonUtils.create_update_and_save_progress_message(
                self._dataframe_context,
                self._scriptWeightDict,
                self._scriptStages,
                self._slug,
                "training",
                "info",
                display=True,
                emptyBin=False,
                customMsg=None,
                weightKey="total")

            st = time.time()

            self._result_setter.set_hyper_parameter_results(self._slug, None)
            evaluationMetricDict = algoSetting.get_evaluvation_metric(
                Type="REGRESSION")
            evaluationMetricDict = {
                "name": GLOBALSETTINGS.REGRESSION_MODEL_EVALUATION_METRIC
            }
            evaluationMetricDict[
                "displayName"] = GLOBALSETTINGS.SKLEARN_EVAL_METRIC_NAME_DISPLAY_MAP[
                    evaluationMetricDict["name"]]

            x_train_tensored, y_train_tensored, x_test_tensored, y_test_tensored = PYTORCHUTILS.get_tensored_data(
                x_train, y_train, x_test, y_test)
            trainset = torch_data_utils.TensorDataset(x_train_tensored,
                                                      y_train_tensored)
            testset = torch_data_utils.TensorDataset(x_test_tensored,
                                                     y_test_tensored)

            nnptr_params = algoSetting.get_nnptr_params_dict()[0]
            layers_for_network = PYTORCHUTILS.get_layers_for_network_module(
                nnptr_params,
                task_type="REGRESSION",
                first_layer_units=x_train.shape[1])

            # Use GPU if available
            device = torch.device(
                "cuda:0" if torch.cuda.is_available() else "cpu")
            network = PyTorchNetwork(layers_for_network).to(device)
            network.eval()

            other_params_dict = PYTORCHUTILS.get_other_pytorch_params(
                nnptr_params,
                task_type="REGRESSION",
                network_params=network.parameters())

            print("~" * 50)
            print("NNPTR-PARAMS - ", nnptr_params)
            print("~" * 50)
            print("OTHER-PARAMS-DICT - ", other_params_dict)
            print("~" * 50)
            print("NEURAL-NETWORK - ", network)
            print("~" * 50)

            criterion = other_params_dict["loss_criterion"]
            n_epochs = other_params_dict["number_of_epochs"]
            batch_size = other_params_dict["batch_size"]
            optimizer = other_params_dict["optimizer"]

            dataloader_params = {
                "batch_size": batch_size,
                "shuffle": True
                # "num_workers":
            }

            train_loader = torch_data_utils.DataLoader(trainset,
                                                       **dataloader_params)
            test_loader = torch_data_utils.DataLoader(testset,
                                                      **dataloader_params)
            '''
            Training the network;
            Batchnormalization(num_features) should be equal to units_op for that layer in training config;
            else --> RuntimeError('running_mean should contain 100 elements not 200',)
            '''

            for epoch in range(n_epochs):
                batchwise_losses = []
                average_loss = 0.0

                for i, (inputs, labels) in enumerate(train_loader):
                    inputs = inputs.to(device)
                    labels = labels.to(device)

                    # Zero the parameter gradients
                    optimizer.zero_grad()

                    # Forward + backward + optimize
                    outputs = network(inputs.float())
                    loss = criterion(outputs, labels.float())
                    loss.backward()
                    optimizer.step()

                    average_loss += loss.item()
                    batchwise_losses.append(loss.item())

                average_loss_per_epoch = old_div(average_loss, (i + 1))
                print("+" * 80)
                print("EPOCH - ", epoch)
                print("BATCHWISE_LOSSES shape - ", len(batchwise_losses))
                print("AVERAGE LOSS PER EPOCH - ", average_loss_per_epoch)
                print("+" * 80)

            trainingTime = time.time() - st
            bestEstimator = network

            outputs_x_test_tensored = network(x_test_tensored.float())
            y_score_mid = outputs_x_test_tensored.tolist()
            y_score = [x[0] for x in y_score_mid]
            print("Y-SCORE - ", y_score)
            print("Y-SCORE length - ", len(y_score))
            y_prob = None

            featureImportance = {}
            objs = {
                "trained_model": bestEstimator,
                "actual": y_test,
                "predicted": y_score,
                "probability": y_prob,
                "feature_importance": featureImportance,
                "featureList": list(x_train.columns),
                "labelMapping": {}
            }
            #featureImportance = objs["trained_model"].feature_importances_
            #featuresArray = [(col_name, featureImportance[idx]) for idx, col_name in enumerate(x_train.columns)]
            featuresArray = []
            if not algoSetting.is_hyperparameter_tuning_enabled():
                modelName = "M" + "0" * (GLOBALSETTINGS.MODEL_NAME_MAX_LENGTH -
                                         1) + "1"
                modelFilepathArr = model_filepath.split("/")[:-1]
                modelFilepathArr.append(modelName + ".pt")
                torch.save(objs["trained_model"], "/".join(modelFilepathArr))
                #joblib.dump(objs["trained_model"],"/".join(modelFilepathArr))
                runtime = round((time.time() - st), 2)
            else:
                runtime = round((time.time() - hyper_st), 2)

            try:
                modelPmmlPipeline = PMMLPipeline([("pretrained-estimator",
                                                   objs["trained_model"])])
                modelPmmlPipeline.target_field = result_column
                modelPmmlPipeline.active_fields = np.array(
                    [col for col in x_train.columns if col != result_column])
                sklearn2pmml(modelPmmlPipeline, pmml_filepath, with_repr=True)
                pmmlfile = open(pmml_filepath, "r")
                pmmlText = pmmlfile.read()
                pmmlfile.close()
                self._result_setter.update_pmml_object({self._slug: pmmlText})
            except:
                pass

            metrics = {}
            metrics["r2"] = r2_score(y_test, y_score)
            metrics["neg_mean_squared_error"] = mean_squared_error(
                y_test, y_score)
            metrics["neg_mean_absolute_error"] = mean_absolute_error(
                y_test, y_score)
            metrics["RMSE"] = sqrt(metrics["neg_mean_squared_error"])
            metrics["explained_variance_score"] = explained_variance_score(
                y_test, y_score)
            transformed = pd.DataFrame({
                "prediction": y_score,
                result_column: y_test
            })
            print("TRANSFORMED PREDICTION TYPE - ",
                  type(transformed["prediction"]))
            print(transformed["prediction"])
            print("TRANSFORMED RESULT COL TYPE - ",
                  type(transformed[result_column]))
            print(transformed[result_column])
            transformed["difference"] = transformed[
                result_column] - transformed["prediction"]
            transformed["mape"] = old_div(
                np.abs(transformed["difference"]) * 100,
                transformed[result_column])

            sampleData = None
            nrows = transformed.shape[0]
            if nrows > 100:
                sampleData = transformed.sample(n=100, random_state=420)
            else:
                sampleData = transformed
            print(sampleData.head())
            if transformed["mape"].max() > 100:
                GLOBALSETTINGS.MAPEBINS.append(transformed["mape"].max())
                mapeCountArr = list(
                    pd.cut(transformed["mape"], GLOBALSETTINGS.MAPEBINS).
                    value_counts().to_dict().items())
                GLOBALSETTINGS.MAPEBINS.pop(5)
            else:
                mapeCountArr = list(
                    pd.cut(transformed["mape"], GLOBALSETTINGS.MAPEBINS).
                    value_counts().to_dict().items())
            mapeStatsArr = [(str(idx), dictObj) for idx, dictObj in enumerate(
                sorted([{
                    "count": x[1],
                    "splitRange": (x[0].left, x[0].right)
                } for x in mapeCountArr],
                       key=lambda x: x["splitRange"][0]))]
            print(mapeStatsArr)
            print(mapeCountArr)
            predictionColSummary = transformed["prediction"].describe(
            ).to_dict()
            quantileBins = [
                predictionColSummary["min"], predictionColSummary["25%"],
                predictionColSummary["50%"], predictionColSummary["75%"],
                predictionColSummary["max"]
            ]
            print(quantileBins)
            quantileBins = sorted(list(set(quantileBins)))
            transformed["quantileBinId"] = pd.cut(transformed["prediction"],
                                                  quantileBins)
            quantileDf = transformed.groupby("quantileBinId").agg({
                "prediction": [np.sum, np.mean, np.size]
            }).reset_index()
            quantileDf.columns = ["prediction", "sum", "mean", "count"]
            print(quantileDf)
            quantileArr = list(quantileDf.T.to_dict().items())
            quantileSummaryArr = [(obj[0], {
                "splitRange":
                (obj[1]["prediction"].left, obj[1]["prediction"].right),
                "count":
                obj[1]["count"],
                "mean":
                obj[1]["mean"],
                "sum":
                obj[1]["sum"]
            }) for obj in quantileArr]
            print(quantileSummaryArr)
            runtime = round((time.time() - st_global), 2)

            self._model_summary.set_model_type("regression")
            self._model_summary.set_algorithm_name("Neural Network (PyTorch)")
            self._model_summary.set_algorithm_display_name(
                "Neural Network (PyTorch)")
            self._model_summary.set_slug(self._slug)
            self._model_summary.set_training_time(runtime)
            self._model_summary.set_training_time(trainingTime)
            self._model_summary.set_target_variable(result_column)
            self._model_summary.set_validation_method(
                validationDict["displayName"])
            self._model_summary.set_model_evaluation_metrics(metrics)
            self._model_summary.set_model_params(nnptr_params)
            self._model_summary.set_quantile_summary(quantileSummaryArr)
            self._model_summary.set_mape_stats(mapeStatsArr)
            self._model_summary.set_sample_data(sampleData.to_dict())
            self._model_summary.set_feature_importance(featuresArray)
            self._model_summary.set_feature_list(list(x_train.columns))
            self._model_summary.set_model_mse(
                metrics["neg_mean_squared_error"])
            self._model_summary.set_model_mae(
                metrics["neg_mean_absolute_error"])
            self._model_summary.set_rmse(metrics["RMSE"])
            self._model_summary.set_model_rsquared(metrics["r2"])
            self._model_summary.set_model_exp_variance_score(
                metrics["explained_variance_score"])

            try:
                pmml_filepath = str(model_path) + "/" + str(
                    self._slug) + "/traindeModel.pmml"
                modelPmmlPipeline = PMMLPipeline([("pretrained-estimator",
                                                   objs["trained_model"])])
                modelPmmlPipeline.target_field = result_column
                modelPmmlPipeline.active_fields = np.array(
                    [col for col in x_train.columns if col != result_column])
                sklearn2pmml(modelPmmlPipeline, pmml_filepath, with_repr=True)
                pmmlfile = open(pmml_filepath, "r")
                pmmlText = pmmlfile.read()
                pmmlfile.close()
                self._result_setter.update_pmml_object({self._slug: pmmlText})
            except:
                pass

        if algoSetting.is_hyperparameter_tuning_enabled():
            modelDropDownObj = {
                "name": self._model_summary.get_algorithm_name(),
                "evaluationMetricValue": metrics[evaluationMetricDict["name"]],
                "evaluationMetricName": evaluationMetricDict["name"],
                "slug": self._model_summary.get_slug(),
                "Model Id": modelName
            }

            modelSummaryJson = {
                "dropdown": modelDropDownObj,
                "levelcount": self._model_summary.get_level_counts(),
                "modelFeatureList": self._model_summary.get_feature_list(),
                "levelMapping": self._model_summary.get_level_map_dict(),
                "slug": self._model_summary.get_slug(),
                "name": self._model_summary.get_algorithm_name()
            }
        else:
            modelDropDownObj = {
                "name": self._model_summary.get_algorithm_name(),
                "evaluationMetricValue": metrics[evaluationMetricDict["name"]],
                "evaluationMetricName": evaluationMetricDict["name"],
                "slug": self._model_summary.get_slug(),
                "Model Id": modelName
            }
            modelSummaryJson = {
                "dropdown": modelDropDownObj,
                "levelcount": self._model_summary.get_level_counts(),
                "modelFeatureList": self._model_summary.get_feature_list(),
                "levelMapping": self._model_summary.get_level_map_dict(),
                "slug": self._model_summary.get_slug(),
                "name": self._model_summary.get_algorithm_name()
            }
        modelmanagement_ = nnptr_params

        self._model_management = MLModelSummary()
        if algoSetting.is_hyperparameter_tuning_enabled():
            pass
        else:
            self._model_management.set_layer_info(
                data=modelmanagement_['hidden_layer_info'])
            self._model_management.set_loss_function(
                data=modelmanagement_['loss'])
            self._model_management.set_optimizer(
                data=modelmanagement_['optimizer'])
            self._model_management.set_batch_size(
                data=modelmanagement_['batch_size'])
            self._model_management.set_no_epochs(
                data=modelmanagement_['number_of_epochs'])
            # self._model_management.set_model_evaluation_metrics(data=modelmanagement_['metrics'])
            self._model_management.set_job_type(
                self._dataframe_context.get_job_name())  #Project name
            self._model_management.set_training_status(
                data="completed")  # training status
            self._model_management.set_no_of_independent_variables(
                data=x_train)  #no of independent varables
            self._model_management.set_training_time(runtime)  # run time
            self._model_management.set_rmse(metrics["RMSE"])
            self._model_management.set_algorithm_name(
                "Neural Network (TensorFlow)")  #algorithm name
            self._model_management.set_validation_method(
                str(validationDict["displayName"]) + "(" +
                str(validationDict["value"]) + ")")  #validation method
            self._model_management.set_target_variable(
                result_column)  #target column name
            self._model_management.set_creation_date(data=str(
                datetime.now().strftime('%b %d ,%Y  %H:%M ')))  #creation date
            self._model_management.set_datasetName(self._datasetName)
        modelManagementSummaryJson = [
            ["Project Name",
             self._model_management.get_job_type()],
            ["Algorithm",
             self._model_management.get_algorithm_name()],
            ["Training Status",
             self._model_management.get_training_status()],
            ["RMSE", self._model_management.get_rmse()],
            ["RunTime", self._model_management.get_training_time()],
            #["Owner",None],
            ["Created On",
             self._model_management.get_creation_date()]
        ]
        if algoSetting.is_hyperparameter_tuning_enabled():
            modelManagementModelSettingsJson = []
        else:
            modelManagementModelSettingsJson = [
                ["Training Dataset",
                 self._model_management.get_datasetName()],
                [
                    "Target Column",
                    self._model_management.get_target_variable()
                ],
                [
                    "Number Of Independent Variables",
                    self._model_management.get_no_of_independent_variables()
                ], ["Algorithm",
                    self._model_management.get_algorithm_name()],
                [
                    "Model Validation",
                    self._model_management.get_validation_method()
                ],
                ["batch_size",
                 str(self._model_management.get_batch_size())],
                ["Loss", self._model_management.get_loss_function()],
                ["Optimizer",
                 self._model_management.get_optimizer()],
                ["Epochs", self._model_management.get_no_epochs()],
                [
                    "Metrics",
                    self._model_management.get_model_evaluation_metrics()
                ]
            ]
            for i in modelmanagement_["hidden_layer_info"]:
                string = ""
                key = str(modelmanagement_["hidden_layer_info"][i]
                          ["layer"]) + " " + str(i) + ":"
                for j in modelmanagement_["hidden_layer_info"][i]:
                    string = string + str(j) + ":" + str(
                        modelmanagement_["hidden_layer_info"][i][j]) + ",   "
                modelManagementModelSettingsJson.append([key, string])
        print(modelManagementModelSettingsJson)

        nnptrCards = [
            json.loads(CommonUtils.convert_python_object_to_json(cardObj)) for
            cardObj in MLUtils.create_model_summary_cards(self._model_summary)
        ]
        nnptrPerformanceCards = [
            json.loads(CommonUtils.convert_python_object_to_json(cardObj))
            for cardObj in MLUtils.create_model_management_cards_regression(
                self._model_summary)
        ]
        nnptrOverviewCards = [
            json.loads(CommonUtils.convert_python_object_to_json(cardObj))
            for cardObj in MLUtils.create_model_management_card_overview(
                self._model_management, modelManagementSummaryJson,
                modelManagementModelSettingsJson)
        ]
        nnptrDeploymentCards = [
            json.loads(CommonUtils.convert_python_object_to_json(cardObj))
            for cardObj in MLUtils.create_model_management_deploy_empty_card()
        ]
        nnptr_Overview_Node = NarrativesTree()
        nnptr_Overview_Node.set_name("Overview")
        nnptr_Performance_Node = NarrativesTree()
        nnptr_Performance_Node.set_name("Performance")
        nnptr_Deployment_Node = NarrativesTree()
        nnptr_Deployment_Node.set_name("Deployment")
        for card in nnptrOverviewCards:
            nnptr_Overview_Node.add_a_card(card)
        for card in nnptrPerformanceCards:
            nnptr_Performance_Node.add_a_card(card)
        for card in nnptrDeploymentCards:
            nnptr_Deployment_Node.add_a_card(card)
        for card in nnptrCards:
            self._prediction_narrative.add_a_card(card)
        self._result_setter.set_model_summary({
            "Neural Network (PyTorch)":
            json.loads(
                CommonUtils.convert_python_object_to_json(self._model_summary))
        })
        self._result_setter.set_nnptr_regression_model_summary(
            modelSummaryJson)
        self._result_setter.set_nnptr_cards(nnptrCards)
        self._result_setter.set_nnptr_nodes([
            nnptr_Overview_Node, nnptr_Performance_Node, nnptr_Deployment_Node
        ])
        self._result_setter.set_nnptr_fail_card({
            "Algorithm_Name": "Neural Network (PyTorch)",
            "Success": "True"
        })
        CommonUtils.create_update_and_save_progress_message(
            self._dataframe_context,
            self._scriptWeightDict,
            self._scriptStages,
            self._slug,
            "completion",
            "info",
            display=True,
            emptyBin=False,
            customMsg=None,
            weightKey="total")
예제 #10
0
    def Train(self):
        st_global = time.time()

        CommonUtils.create_update_and_save_progress_message(
            self._dataframe_context,
            self._scriptWeightDict,
            self._scriptStages,
            self._slug,
            "initialization",
            "info",
            display=True,
            emptyBin=False,
            customMsg=None,
            weightKey="total")

        appType = self._dataframe_context.get_app_type()
        algosToRun = self._dataframe_context.get_algorithms_to_run()
        algoSetting = [
            x for x in algosToRun if x.get_algorithm_slug() == self._slug
        ][0]
        categorical_columns = self._dataframe_helper.get_string_columns()
        uid_col = self._dataframe_context.get_uid_column()
        if self._metaParser.check_column_isin_ignored_suggestion(uid_col):
            categorical_columns = list(set(categorical_columns) - {uid_col})
        allDateCols = self._dataframe_context.get_date_columns()
        categorical_columns = list(set(categorical_columns) - set(allDateCols))
        print(categorical_columns)
        result_column = self._dataframe_context.get_result_column()
        numerical_columns = self._dataframe_helper.get_numeric_columns()
        numerical_columns = [
            x for x in numerical_columns if x != result_column
        ]

        model_path = self._dataframe_context.get_model_path()
        if model_path.startswith("file"):
            model_path = model_path[7:]
        validationDict = self._dataframe_context.get_validation_dict()
        print("model_path", model_path)
        pipeline_filepath = "file://" + str(model_path) + "/" + str(
            self._slug) + "/pipeline/"
        model_filepath = "file://" + str(model_path) + "/" + str(
            self._slug) + "/model"
        pmml_filepath = "file://" + str(model_path) + "/" + str(
            self._slug) + "/modelPmml"

        df = self._data_frame
        if self._mlEnv == "spark":
            pass
        elif self._mlEnv == "sklearn":
            model_filepath = model_path + "/" + self._slug + "/model.pkl"
            x_train, x_test, y_train, y_test = self._dataframe_helper.get_train_test_data(
            )
            x_train = MLUtils.create_dummy_columns(
                x_train,
                [x for x in categorical_columns if x != result_column])
            x_test = MLUtils.create_dummy_columns(
                x_test, [x for x in categorical_columns if x != result_column])
            x_test = MLUtils.fill_missing_columns(x_test, x_train.columns,
                                                  result_column)

            st = time.time()

            CommonUtils.create_update_and_save_progress_message(
                self._dataframe_context,
                self._scriptWeightDict,
                self._scriptStages,
                self._slug,
                "training",
                "info",
                display=True,
                emptyBin=False,
                customMsg=None,
                weightKey="total")

            if algoSetting.is_hyperparameter_tuning_enabled():
                pass
            else:
                self._result_setter.set_hyper_parameter_results(
                    self._slug, None)
                evaluationMetricDict = algoSetting.get_evaluvation_metric(
                    Type="Regression")
                evaluationMetricDict[
                    "displayName"] = GLOBALSETTINGS.SKLEARN_EVAL_METRIC_NAME_DISPLAY_MAP[
                        evaluationMetricDict["name"]]
                params_tf = algoSetting.get_tf_params_dict()
                algoParams = algoSetting.get_params_dict()
                algoParams = {k: v for k, v in list(algoParams.items())}

                model = tf.keras.models.Sequential()
                first_layer_flag = True

                for i in range(len(list(
                        params_tf['hidden_layer_info'].keys()))):
                    if params_tf['hidden_layer_info'][str(
                            i)]["layer"] == "Dense":

                        if first_layer_flag:
                            model.add(
                                tf.keras.layers.Dense(
                                    params_tf['hidden_layer_info'][str(
                                        i)]["units"],
                                    activation=params_tf['hidden_layer_info'][
                                        str(i)]["activation"],
                                    input_shape=(len(x_train.columns), ),
                                    use_bias=params_tf['hidden_layer_info'][
                                        str(i)]["use_bias"],
                                    kernel_initializer=params_tf[
                                        'hidden_layer_info'][str(
                                            i)]["kernel_initializer"],
                                    bias_initializer=params_tf[
                                        'hidden_layer_info'][str(
                                            i)]["bias_initializer"],
                                    kernel_regularizer=params_tf[
                                        'hidden_layer_info'][str(
                                            i)]["kernel_regularizer"],
                                    bias_regularizer=params_tf[
                                        'hidden_layer_info'][str(
                                            i)]["bias_regularizer"],
                                    activity_regularizer=params_tf[
                                        'hidden_layer_info'][str(
                                            i)]["activity_regularizer"],
                                    kernel_constraint=params_tf[
                                        'hidden_layer_info'][str(
                                            i)]["kernel_constraint"],
                                    bias_constraint=params_tf[
                                        'hidden_layer_info'][str(
                                            i)]["bias_constraint"]))
                            try:
                                if params_tf['hidden_layer_info'][str(
                                        i)]["batch_normalization"] == "True":
                                    model.add(
                                        tf.keras.layers.BatchNormalization())
                            except:
                                print(
                                    "BATCH_NORM_FAILED ##########################"
                                )
                                pass
                            first_layer_flag = False
                        else:
                            model.add(
                                tf.keras.layers.Dense(
                                    params_tf['hidden_layer_info'][str(
                                        i)]["units"],
                                    activation=params_tf['hidden_layer_info'][
                                        str(i)]["activation"],
                                    use_bias=params_tf['hidden_layer_info'][
                                        str(i)]["use_bias"],
                                    kernel_initializer=params_tf[
                                        'hidden_layer_info'][str(
                                            i)]["kernel_initializer"],
                                    bias_initializer=params_tf[
                                        'hidden_layer_info'][str(
                                            i)]["bias_initializer"],
                                    kernel_regularizer=params_tf[
                                        'hidden_layer_info'][str(
                                            i)]["kernel_regularizer"],
                                    bias_regularizer=params_tf[
                                        'hidden_layer_info'][str(
                                            i)]["bias_regularizer"],
                                    activity_regularizer=params_tf[
                                        'hidden_layer_info'][str(
                                            i)]["activity_regularizer"],
                                    kernel_constraint=params_tf[
                                        'hidden_layer_info'][str(
                                            i)]["kernel_constraint"],
                                    bias_constraint=params_tf[
                                        'hidden_layer_info'][str(
                                            i)]["bias_constraint"]))
                            try:
                                if params_tf['hidden_layer_info'][str(
                                        i)]["batch_normalization"] == "True":
                                    model.add(
                                        tf.keras.layers.BatchNormalization())
                            except:
                                print(
                                    "BATCH_NORM_FAILED ##########################"
                                )
                                pass

                    elif params_tf['hidden_layer_info'][str(
                            i)]["layer"] == "Dropout":
                        model.add(
                            tf.keras.layers.Dropout(
                                float(params_tf['hidden_layer_info'][str(i)]
                                      ["rate"])))

                    elif params_tf['hidden_layer_info'][str(
                            i)]["layer"] == "Lambda":
                        if params_tf['hidden_layer_info'][str(
                                i)]["lambda"] == "Addition":
                            model.add(
                                tf.keras.layers.Lambda(lambda x: x + int(
                                    params_tf['hidden_layer_info'][str(i)][
                                        "units"])))
                        if params_tf['hidden_layer_info'][str(
                                i)]["lambda"] == "Multiplication":
                            model.add(
                                tf.keras.layers.Lambda(lambda x: x * int(
                                    params_tf['hidden_layer_info'][str(i)][
                                        "units"])))
                        if params_tf['hidden_layer_info'][str(
                                i)]["lambda"] == "Subtraction":
                            model.add(
                                tf.keras.layers.Lambda(lambda x: x - int(
                                    params_tf['hidden_layer_info'][str(i)][
                                        "units"])))
                        if params_tf['hidden_layer_info'][str(
                                i)]["lambda"] == "Division":
                            model.add(
                                tf.keras.layers.Lambda(lambda x: old_div(
                                    x,
                                    int(params_tf['hidden_layer_info'][str(i)][
                                        "units"]))))

                model.compile(optimizer=algoParams["optimizer"],
                              loss=algoParams["loss"],
                              metrics=[algoParams['metrics']])

                model.fit(x_train,
                          y_train,
                          epochs=algoParams["number_of_epochs"],
                          verbose=1,
                          batch_size=algoParams["batch_size"])

                bestEstimator = model
            print(model.summary())
            trainingTime = time.time() - st
            y_score = bestEstimator.predict(x_test)
            y_score = list(y_score.flatten())
            try:
                y_prob = bestEstimator.predict_proba(x_test)
            except:
                y_prob = [0] * len(y_score)
            featureImportance = {}

            objs = {
                "trained_model": bestEstimator,
                "actual": y_test,
                "predicted": y_score,
                "probability": y_prob,
                "feature_importance": featureImportance,
                "featureList": list(x_train.columns),
                "labelMapping": {}
            }
            #featureImportance = objs["trained_model"].feature_importances_
            #featuresArray = [(col_name, featureImportance[idx]) for idx, col_name in enumerate(x_train.columns)]
            featuresArray = []
            if not algoSetting.is_hyperparameter_tuning_enabled():
                modelName = "M" + "0" * (GLOBALSETTINGS.MODEL_NAME_MAX_LENGTH -
                                         1) + "1"
                modelFilepathArr = model_filepath.split("/")[:-1]
                modelFilepathArr.append(modelName + ".h5")
                objs["trained_model"].save("/".join(modelFilepathArr))
                #joblib.dump(objs["trained_model"],"/".join(modelFilepathArr))
            metrics = {}
            metrics["r2"] = r2_score(y_test, y_score)
            metrics["neg_mean_squared_error"] = mean_squared_error(
                y_test, y_score)
            metrics["neg_mean_absolute_error"] = mean_absolute_error(
                y_test, y_score)
            metrics["RMSE"] = sqrt(metrics["neg_mean_squared_error"])
            metrics["explained_variance_score"] = explained_variance_score(
                y_test, y_score)
            transformed = pd.DataFrame({
                "prediction": y_score,
                result_column: y_test
            })
            transformed["difference"] = transformed[
                result_column] - transformed["prediction"]
            transformed["mape"] = old_div(
                np.abs(transformed["difference"]) * 100,
                transformed[result_column])

            sampleData = None
            nrows = transformed.shape[0]
            if nrows > 100:
                sampleData = transformed.sample(n=100, random_state=420)
            else:
                sampleData = transformed
            print(sampleData.head())
            if transformed["mape"].max() > 100:
                GLOBALSETTINGS.MAPEBINS.append(transformed["mape"].max())
                mapeCountArr = list(
                    pd.cut(transformed["mape"], GLOBALSETTINGS.MAPEBINS).
                    value_counts().to_dict().items())
                GLOBALSETTINGS.MAPEBINS.pop(5)
            else:
                mapeCountArr = list(
                    pd.cut(transformed["mape"], GLOBALSETTINGS.MAPEBINS).
                    value_counts().to_dict().items())
            mapeStatsArr = [(str(idx), dictObj) for idx, dictObj in enumerate(
                sorted([{
                    "count": x[1],
                    "splitRange": (x[0].left, x[0].right)
                } for x in mapeCountArr],
                       key=lambda x: x["splitRange"][0]))]
            print(mapeStatsArr)
            print(mapeCountArr)
            predictionColSummary = transformed["prediction"].describe(
            ).to_dict()
            quantileBins = [
                predictionColSummary["min"], predictionColSummary["25%"],
                predictionColSummary["50%"], predictionColSummary["75%"],
                predictionColSummary["max"]
            ]
            print(quantileBins)
            quantileBins = sorted(list(set(quantileBins)))
            transformed["quantileBinId"] = pd.cut(transformed["prediction"],
                                                  quantileBins)
            quantileDf = transformed.groupby("quantileBinId").agg({
                "prediction": [np.sum, np.mean, np.size]
            }).reset_index()
            quantileDf.columns = ["prediction", "sum", "mean", "count"]
            print(quantileDf)
            quantileArr = list(quantileDf.T.to_dict().items())
            quantileSummaryArr = [(obj[0], {
                "splitRange":
                (obj[1]["prediction"].left, obj[1]["prediction"].right),
                "count":
                obj[1]["count"],
                "mean":
                obj[1]["mean"],
                "sum":
                obj[1]["sum"]
            }) for obj in quantileArr]
            print(quantileSummaryArr)
            runtime = round((time.time() - st_global), 2)

            self._model_summary.set_model_type("regression")
            self._model_summary.set_algorithm_name(
                "Neural Network (TensorFlow)")
            self._model_summary.set_algorithm_display_name(
                "Neural Network (TensorFlow)")
            self._model_summary.set_slug(self._slug)
            self._model_summary.set_training_time(runtime)
            self._model_summary.set_training_time(trainingTime)
            self._model_summary.set_target_variable(result_column)
            self._model_summary.set_validation_method(
                validationDict["displayName"])
            self._model_summary.set_model_evaluation_metrics(metrics)
            self._model_summary.set_model_params(params_tf)
            self._model_summary.set_quantile_summary(quantileSummaryArr)
            self._model_summary.set_mape_stats(mapeStatsArr)
            self._model_summary.set_sample_data(sampleData.to_dict())
            self._model_summary.set_feature_importance(featuresArray)
            self._model_summary.set_feature_list(list(x_train.columns))
            self._model_summary.set_model_mse(
                metrics["neg_mean_squared_error"])
            self._model_summary.set_model_mae(
                metrics["neg_mean_absolute_error"])
            self._model_summary.set_rmse(metrics["RMSE"])
            self._model_summary.set_model_rsquared(metrics["r2"])
            self._model_summary.set_model_exp_variance_score(
                metrics["explained_variance_score"])

            try:
                pmml_filepath = str(model_path) + "/" + str(
                    self._slug) + "/traindeModel.pmml"
                modelPmmlPipeline = PMMLPipeline([("pretrained-estimator",
                                                   objs["trained_model"])])
                modelPmmlPipeline.target_field = result_column
                modelPmmlPipeline.active_fields = np.array(
                    [col for col in x_train.columns if col != result_column])
                sklearn2pmml(modelPmmlPipeline, pmml_filepath, with_repr=True)
                pmmlfile = open(pmml_filepath, "r")
                pmmlText = pmmlfile.read()
                pmmlfile.close()
                self._result_setter.update_pmml_object({self._slug: pmmlText})
            except:
                pass

        if algoSetting.is_hyperparameter_tuning_enabled():
            modelDropDownObj = {
                "name": self._model_summary.get_algorithm_name(),
                "evaluationMetricValue": metrics[evaluationMetricDict["name"]],
                "evaluationMetricName": evaluationMetricDict["name"],
                "slug": self._model_summary.get_slug(),
                "Model Id": modelName
            }

            modelSummaryJson = {
                "dropdown": modelDropDownObj,
                "levelcount": self._model_summary.get_level_counts(),
                "modelFeatureList": self._model_summary.get_feature_list(),
                "levelMapping": self._model_summary.get_level_map_dict(),
                "slug": self._model_summary.get_slug(),
                "name": self._model_summary.get_algorithm_name()
            }
        else:
            modelDropDownObj = {
                "name": self._model_summary.get_algorithm_name(),
                "evaluationMetricValue": metrics[evaluationMetricDict["name"]],
                "evaluationMetricName": evaluationMetricDict["name"],
                "slug": self._model_summary.get_slug(),
                "Model Id": modelName
            }
            modelSummaryJson = {
                "dropdown": modelDropDownObj,
                "levelcount": self._model_summary.get_level_counts(),
                "modelFeatureList": self._model_summary.get_feature_list(),
                "levelMapping": self._model_summary.get_level_map_dict(),
                "slug": self._model_summary.get_slug(),
                "name": self._model_summary.get_algorithm_name()
            }
        modelmanagement_ = params_tf
        modelmanagement_.update(algoParams)

        self._model_management = MLModelSummary()
        if algoSetting.is_hyperparameter_tuning_enabled():
            pass
        else:
            self._model_management.set_layer_info(
                data=modelmanagement_['hidden_layer_info'])
            self._model_management.set_loss_function(
                data=modelmanagement_['loss'])
            self._model_management.set_optimizer(
                data=modelmanagement_['optimizer'])
            self._model_management.set_batch_size(
                data=modelmanagement_['batch_size'])
            self._model_management.set_no_epochs(
                data=modelmanagement_['number_of_epochs'])
            self._model_management.set_model_evaluation_metrics(
                data=modelmanagement_['metrics'])
            self._model_management.set_job_type(
                self._dataframe_context.get_job_name())  #Project name
            self._model_management.set_training_status(
                data="completed")  # training status
            self._model_management.set_no_of_independent_variables(
                data=x_train)  #no of independent varables
            self._model_management.set_training_time(runtime)  # run time
            self._model_management.set_rmse(metrics["RMSE"])
            self._model_management.set_algorithm_name(
                "Neural Network (TensorFlow)")  #algorithm name
            self._model_management.set_validation_method(
                str(validationDict["displayName"]) + "(" +
                str(validationDict["value"]) + ")")  #validation method
            self._model_management.set_target_variable(
                result_column)  #target column name
            self._model_management.set_creation_date(data=str(
                datetime.now().strftime('%b %d ,%Y  %H:%M ')))  #creation date
            self._model_management.set_datasetName(self._datasetName)
        modelManagementSummaryJson = [
            ["Project Name",
             self._model_management.get_job_type()],
            ["Algorithm",
             self._model_management.get_algorithm_name()],
            ["Training Status",
             self._model_management.get_training_status()],
            ["RMSE", self._model_management.get_rmse()],
            ["RunTime", self._model_management.get_training_time()],
            #["Owner",None],
            ["Created On",
             self._model_management.get_creation_date()]
        ]
        if algoSetting.is_hyperparameter_tuning_enabled():
            modelManagementModelSettingsJson = []
        else:
            modelManagementModelSettingsJson = [
                ["Training Dataset",
                 self._model_management.get_datasetName()],
                [
                    "Target Column",
                    self._model_management.get_target_variable()
                ],
                [
                    "Number Of Independent Variables",
                    self._model_management.get_no_of_independent_variables()
                ], ["Algorithm",
                    self._model_management.get_algorithm_name()],
                [
                    "Model Validation",
                    self._model_management.get_validation_method()
                ],
                ["batch_size",
                 str(self._model_management.get_batch_size())],
                ["Loss", self._model_management.get_loss_function()],
                ["Optimizer",
                 self._model_management.get_optimizer()],
                ["Epochs", self._model_management.get_no_epochs()],
                [
                    "Metrics",
                    self._model_management.get_model_evaluation_metrics()
                ]
            ]
            for i in range(
                    len(list(modelmanagement_['hidden_layer_info'].keys()))):
                string = ""
                key = "layer No-" + str(i) + "-" + str(
                    modelmanagement_["hidden_layer_info"][str(i)]["layer"] +
                    "-")
                for j in modelmanagement_["hidden_layer_info"][str(i)]:
                    modelManagementModelSettingsJson.append([
                        key + j + ":",
                        modelmanagement_["hidden_layer_info"][str(i)][j]
                    ])
        print(modelManagementModelSettingsJson)

        tfregCards = [
            json.loads(CommonUtils.convert_python_object_to_json(cardObj)) for
            cardObj in MLUtils.create_model_summary_cards(self._model_summary)
        ]

        tfregPerformanceCards = [
            json.loads(CommonUtils.convert_python_object_to_json(cardObj))
            for cardObj in MLUtils.create_model_management_cards_regression(
                self._model_summary)
        ]
        tfregOverviewCards = [
            json.loads(CommonUtils.convert_python_object_to_json(cardObj))
            for cardObj in MLUtils.create_model_management_card_overview(
                self._model_management, modelManagementSummaryJson,
                modelManagementModelSettingsJson)
        ]
        tfregDeploymentCards = [
            json.loads(CommonUtils.convert_python_object_to_json(cardObj))
            for cardObj in MLUtils.create_model_management_deploy_empty_card()
        ]
        TFReg_Overview_Node = NarrativesTree()
        TFReg_Overview_Node.set_name("Overview")
        TFReg_Performance_Node = NarrativesTree()
        TFReg_Performance_Node.set_name("Performance")
        TFReg_Deployment_Node = NarrativesTree()
        TFReg_Deployment_Node.set_name("Deployment")
        for card in tfregOverviewCards:
            TFReg_Overview_Node.add_a_card(card)
        for card in tfregPerformanceCards:
            TFReg_Performance_Node.add_a_card(card)
        for card in tfregDeploymentCards:
            TFReg_Deployment_Node.add_a_card(card)
        for card in tfregCards:
            self._prediction_narrative.add_a_card(card)
        self._result_setter.set_model_summary({
            "Neural Network (TensorFlow)":
            json.loads(
                CommonUtils.convert_python_object_to_json(self._model_summary))
        })
        self._result_setter.set_tfreg_regression_model_summart(
            modelSummaryJson)
        self._result_setter.set_tfreg_cards(tfregCards)
        self._result_setter.set_tfreg_nodes([
            TFReg_Overview_Node, TFReg_Performance_Node, TFReg_Deployment_Node
        ])
        self._result_setter.set_tfreg_fail_card({
            "Algorithm_Name": "Neural Network (TensorFlow)",
            "Success": "True"
        })
        CommonUtils.create_update_and_save_progress_message(
            self._dataframe_context,
            self._scriptWeightDict,
            self._scriptStages,
            self._slug,
            "completion",
            "info",
            display=True,
            emptyBin=False,
            customMsg=None,
            weightKey="total")
예제 #11
0
    def Train(self):
        st_global = time.time()

        CommonUtils.create_update_and_save_progress_message(self._dataframe_context, self._scriptWeightDict,
                                                            self._scriptStages, self._slug, "initialization", "info",
                                                            display=True, emptyBin=False, customMsg=None,
                                                            weightKey="total")

        algosToRun = self._dataframe_context.get_algorithms_to_run()
        algoSetting = [x for x in algosToRun if x.get_algorithm_slug()==self._slug][0]
        categorical_columns = self._dataframe_helper.get_string_columns()
        uid_col = self._dataframe_context.get_uid_column()

        if self._metaParser.check_column_isin_ignored_suggestion(uid_col):
            categorical_columns = list(set(categorical_columns) - {uid_col})

        allDateCols = self._dataframe_context.get_date_columns()
        categorical_columns = list(set(categorical_columns) - set(allDateCols))
        numerical_columns = self._dataframe_helper.get_numeric_columns()
        result_column = self._dataframe_context.get_result_column()
        categorical_columns = [x for x in categorical_columns if x != result_column]

        appType = self._dataframe_context.get_app_type()

        model_path = self._dataframe_context.get_model_path()
        if model_path.startswith("file"):
            model_path = model_path[7:]
        validationDict = self._dataframe_context.get_validation_dict()

        # pipeline_filepath = "file://"+str(model_path)+"/"+str(self._slug)+"/pipeline/"
        # model_filepath = "file://"+str(model_path)+"/"+str(self._slug)+"/model"
        # pmml_filepath = "file://"+str(model_path)+"/"+str(self._slug)+"/modelPmml"

        df = self._data_frame
        levels = df.select(result_column).distinct().count()

        appType = self._dataframe_context.get_app_type()

        model_filepath = model_path + "/" + self._slug + "/model"
        pmml_filepath = str(model_path) + "/" + str(self._slug) + "/trainedModel.pmml"

        CommonUtils.create_update_and_save_progress_message(self._dataframe_context, self._scriptWeightDict,
                                                            self._scriptStages, self._slug, "training", "info",
                                                            display=True, emptyBin=False, customMsg=None,
                                                            weightKey="total")

        st = time.time()
        pipeline = MLUtils.create_pyspark_ml_pipeline(numerical_columns, categorical_columns, result_column)
        vectorFeats = pipeline.getStages()[-1].transform(df)
        input_feats = len(vectorFeats.select('features').take(1)[0][0])

        trainingData, validationData = MLUtils.get_training_and_validation_data(df, result_column, 0.8)  # indexed

        labelIndexer = StringIndexer(inputCol=result_column, outputCol="label")
        # OriginalTargetconverter = IndexToString(inputCol="label", outputCol="originalTargetColumn")

        # Label Mapping and Inverse
        labelIdx = labelIndexer.fit(trainingData)
        labelMapping = {k: v for k, v in enumerate(labelIdx.labels)}
        inverseLabelMapping = {v: float(k) for k, v in enumerate(labelIdx.labels)}

        clf = MultilayerPerceptronClassifier()
        if not algoSetting.is_hyperparameter_tuning_enabled():
            algoParams = algoSetting.get_params_dict()
        else:
            algoParams = algoSetting.get_params_dict_hyperparameter()
        clfParams = [prm.name for prm in clf.params]

        algoParams = {getattr(clf, k): v if isinstance(v, list) else [v] for k, v in algoParams.items() if
                      k in clfParams}

        paramGrid = ParamGridBuilder()
        layer_param_val = algoParams[getattr(clf, 'layers')]

        for layer in layer_param_val:
            layer.insert(0, input_feats)
            layer.append(levels)

        print('layer_param_val =', layer_param_val)

        # if not algoSetting.is_hyperparameter_tuning_enabled():
        #     for k,v in algoParams.items():
        #         if k.name == 'layers':
        #             paramGrid = paramGrid.addGrid(k,layer_param_val)
        #         else:
        #             paramGrid = paramGrid.addGrid(k,v)
        #     paramGrid = paramGrid.build()
        # else:
        for k, v in algoParams.items():
            if v == [None] * len(v):
                continue
            if k.name == 'layers':
                paramGrid = paramGrid.addGrid(k, layer_param_val)
            else:
                paramGrid = paramGrid.addGrid(k, v)
        paramGrid = paramGrid.build()

        if len(paramGrid) > 1:
            hyperParamInitParam = algoSetting.get_hyperparameter_params()
            evaluationMetricDict = {"name": hyperParamInitParam["evaluationMetric"]}
            evaluationMetricDict["displayName"] = GLOBALSETTINGS.SKLEARN_EVAL_METRIC_NAME_DISPLAY_MAP[
                evaluationMetricDict["name"]]
        else:
            evaluationMetricDict = {"name": GLOBALSETTINGS.CLASSIFICATION_MODEL_EVALUATION_METRIC}
            evaluationMetricDict["displayName"] = GLOBALSETTINGS.SKLEARN_EVAL_METRIC_NAME_DISPLAY_MAP[
                evaluationMetricDict["name"]]

        self._result_setter.set_hyper_parameter_results(self._slug, None)

        if validationDict["name"] == "kFold":
            numFold = int(validationDict["value"])
            estimator = Pipeline(stages=[pipeline, labelIndexer, clf])
            if algoSetting.is_hyperparameter_tuning_enabled():
                modelFilepath = "/".join(model_filepath.split("/")[:-1])
                pySparkHyperParameterResultObj = PySparkGridSearchResult(estimator, paramGrid, appType, modelFilepath,
                                                                         levels,
                                                                         evaluationMetricDict, trainingData,
                                                                         validationData, numFold, self._targetLevel,
                                                                         labelMapping, inverseLabelMapping,
                                                                         df)
                resultArray = pySparkHyperParameterResultObj.train_and_save_classification_models()
                self._result_setter.set_hyper_parameter_results(self._slug, resultArray)
                self._result_setter.set_metadata_parallel_coordinates(self._slug,
                                                                      {
                                                                          "ignoreList": pySparkHyperParameterResultObj.get_ignore_list(),
                                                                          "hideColumns": pySparkHyperParameterResultObj.get_hide_columns(),
                                                                          "metricColName": pySparkHyperParameterResultObj.get_comparison_metric_colname(),
                                                                          "columnOrder": pySparkHyperParameterResultObj.get_keep_columns()})

                bestModel = pySparkHyperParameterResultObj.getBestModel()
                prediction = pySparkHyperParameterResultObj.getBestPrediction()
                bestModelName = resultArray[0]["Model Id"]

            else:
                crossval = CrossValidator(estimator=estimator,
                                          estimatorParamMaps=paramGrid,
                                          evaluator=BinaryClassificationEvaluator() if levels == 2 else MulticlassClassificationEvaluator(),
                                          numFolds=3 if numFold is None else numFold)  # use 3+ folds in practice
                cvrf = crossval.fit(trainingData)
                prediction = cvrf.transform(validationData)
                bestModel = cvrf.bestModel
                bestModelName = "M" + "0" * (GLOBALSETTINGS.MODEL_NAME_MAX_LENGTH - 1) + "1"

        else:
            train_test_ratio = float(self._dataframe_context.get_train_test_split())
            estimator = Pipeline(stages=[pipeline, labelIndexer, clf])
            if algoSetting.is_hyperparameter_tuning_enabled():
                modelFilepath = "/".join(model_filepath.split("/")[:-1])
                pySparkHyperParameterResultObj = PySparkTrainTestResult(estimator, paramGrid, appType, modelFilepath,
                                                                        levels,
                                                                        evaluationMetricDict, trainingData,
                                                                        validationData, train_test_ratio,
                                                                        self._targetLevel, labelMapping,
                                                                        inverseLabelMapping,
                                                                        df)
                resultArray = pySparkHyperParameterResultObj.train_and_save_classification_models()
                self._result_setter.set_hyper_parameter_results(self._slug, resultArray)
                self._result_setter.set_metadata_parallel_coordinates(self._slug,
                                                                      {
                                                                          "ignoreList": pySparkHyperParameterResultObj.get_ignore_list(),
                                                                          "hideColumns": pySparkHyperParameterResultObj.get_hide_columns(),
                                                                          "metricColName": pySparkHyperParameterResultObj.get_comparison_metric_colname(),
                                                                          "columnOrder": pySparkHyperParameterResultObj.get_keep_columns()})

                bestModel = pySparkHyperParameterResultObj.getBestModel()
                prediction = pySparkHyperParameterResultObj.getBestPrediction()
                bestModelName = resultArray[0]["Model Id"]

            else:
                tvs = TrainValidationSplit(estimator=estimator,
                                           estimatorParamMaps=paramGrid,
                                           evaluator=BinaryClassificationEvaluator() if levels == 2 else MulticlassClassificationEvaluator(),
                                           trainRatio=train_test_ratio)

                tvrf = tvs.fit(trainingData)
                prediction = tvrf.transform(validationData)
                bestModel = tvrf.bestModel
                bestModelName = "M" + "0" * (GLOBALSETTINGS.MODEL_NAME_MAX_LENGTH - 1) + "1"

        MLUtils.save_pipeline_or_model(bestModel,model_filepath)
        predsAndLabels = prediction.select(['prediction', 'label']).rdd.map(tuple)
        metrics = MulticlassMetrics(predsAndLabels)
        posLabel = inverseLabelMapping[self._targetLevel]

        conf_mat_ar = metrics.confusionMatrix().toArray()
        print(conf_mat_ar)
        confusion_matrix = {}
        for i in range(len(conf_mat_ar)):
            confusion_matrix[labelMapping[i]] = {}
            for j, val in enumerate(conf_mat_ar[i]):
                confusion_matrix[labelMapping[i]][labelMapping[j]] = val
        print(confusion_matrix)

        trainingTime = time.time() - st

        f1_score = metrics.fMeasure(inverseLabelMapping[self._targetLevel], 1.0)
        precision = metrics.precision(inverseLabelMapping[self._targetLevel])
        recall = metrics.recall(inverseLabelMapping[self._targetLevel])
        accuracy = metrics.accuracy
        roc_auc = 'Undefined'
        if levels == 2:
            bin_metrics = BinaryClassificationMetrics(predsAndLabels)
            roc_auc = bin_metrics.areaUnderROC
            precision = metrics.precision(inverseLabelMapping[self._targetLevel])
            recall = metrics.recall(inverseLabelMapping[self._targetLevel])
        print(f1_score,precision,recall,accuracy)

        #gain chart implementation
        def cal_prob_eval(x):
            if len(x) == 1:
                if x == posLabel:
                    return(float(x[1]))
                else:
                    return(float(1 - x[1]))
            else:
                return(float(x[int(posLabel)]))


        column_name= 'probability'
        def y_prob_for_eval_udf():
            return udf(lambda x:cal_prob_eval(x))
        prediction = prediction.withColumn("y_prob_for_eval", y_prob_for_eval_udf()(col(column_name)))

        try:
            pys_df = prediction.select(['y_prob_for_eval','prediction','label'])
            gain_lift_ks_obj = GainLiftKS(pys_df, 'y_prob_for_eval', 'prediction', 'label', posLabel, self._spark)
            gain_lift_KS_dataframe = gain_lift_ks_obj.Run().toPandas()
        except:
            try:
                temp_df = pys_df.toPandas()
                gain_lift_ks_obj = GainLiftKS(temp_df, 'y_prob_for_eval', 'prediction', 'label', posLabel, self._spark)
                gain_lift_KS_dataframe = gain_lift_ks_obj.Rank_Ordering()
            except:
                print("gain chant failed")
                gain_lift_KS_dataframe = None


        objs = {"trained_model": bestModel, "actual": prediction.select('label'),
                "predicted": prediction.select('prediction'),
                "probability": prediction.select('probability'), "feature_importance": None,
                "featureList": list(categorical_columns) + list(numerical_columns), "labelMapping": labelMapping}

        # Calculating prediction_split
        val_cnts = prediction.groupBy('label').count()
        val_cnts = map(lambda row: row.asDict(), val_cnts.collect())
        prediction_split = {}
        total_nos = objs['actual'].count()
        for item in val_cnts:
            classname = labelMapping[item['label']]
            prediction_split[classname] = round(item['count'] * 100 / float(total_nos), 2)

        if not algoSetting.is_hyperparameter_tuning_enabled():
            # modelName = "M" + "0" * (GLOBALSETTINGS.MODEL_NAME_MAX_LENGTH - 1) + "1"
            modelFilepathArr = model_filepath.split("/")[:-1]
            modelFilepathArr.append(bestModelName)
            bestModel.save("/".join(modelFilepathArr))
        runtime = round((time.time() - st_global), 2)

        try:
            print(pmml_filepath)
            pmmlBuilder = PMMLBuilder(self._spark, trainingData, bestModel).putOption(clf, 'compact', True)
            pmmlBuilder.buildFile(pmml_filepath)
            pmmlfile = open(pmml_filepath, "r")
            pmmlText = pmmlfile.read()
            pmmlfile.close()
            self._result_setter.update_pmml_object({self._slug: pmmlText})
        except Exception as e:
            print("PMML failed...", str(e))
            pass

        cat_cols = list(set(categorical_columns) - {result_column})
        self._model_summary = MLModelSummary()
        self._model_summary.set_algorithm_name("Spark ML Multilayer Perceptron")
        self._model_summary.set_algorithm_display_name("Spark ML Multilayer Perceptron")
        self._model_summary.set_slug(self._slug)
        self._model_summary.set_training_time(runtime)
        self._model_summary.set_confusion_matrix(confusion_matrix)
        self._model_summary.set_feature_importance(objs["feature_importance"])
        self._model_summary.set_feature_list(objs["featureList"])
        self._model_summary.set_model_accuracy(accuracy)
        self._model_summary.set_training_time(round((time.time() - st), 2))
        self._model_summary.set_precision_recall_stats([precision, recall])
        self._model_summary.set_model_precision(precision)
        self._model_summary.set_model_recall(recall)
        self._model_summary.set_target_variable(result_column)
        self._model_summary.set_prediction_split(prediction_split)
        self._model_summary.set_validation_method("KFold")
        self._model_summary.set_level_map_dict(objs["labelMapping"])
        self._model_summary.set_model_features(objs["featureList"])
        self._model_summary.set_level_counts(
            self._metaParser.get_unique_level_dict(list(set(categorical_columns)) + [result_column]))
        self._model_summary.set_num_trees(None)
        self._model_summary.set_num_rules(300)
        self._model_summary.set_target_level(self._targetLevel)

        modelManagementJson = {
            "Model ID": "SPMLP-" + bestModelName,
            "Project Name": self._dataframe_context.get_job_name(),
            "Algorithm": self._model_summary.get_algorithm_name(),
            "Status": 'Completed',
            "Accuracy": accuracy,
            "Runtime": runtime,
            "Created On": "",
            "Owner": "",
            "Deployment": 0,
            "Action": ''
        }

        # if not algoSetting.is_hyperparameter_tuning_enabled():
        #     modelDropDownObj = {
        #         "name": self._model_summary.get_algorithm_name(),
        #         "evaluationMetricValue": locals()[evaluationMetricDict["name"]], # accuracy
        #         "evaluationMetricName": evaluationMetricDict["displayName"], # accuracy
        #         "slug": self._model_summary.get_slug(),
        #         "Model Id": bestModelName
        #     }
        #     modelSummaryJson = {
        #         "dropdown": modelDropDownObj,
        #         "levelcount": self._model_summary.get_level_counts(),
        #         "modelFeatureList": self._model_summary.get_feature_list(),
        #         "levelMapping": self._model_summary.get_level_map_dict(),
        #         "slug": self._model_summary.get_slug(),
        #         "name": self._model_summary.get_algorithm_name()
        #     }
        # else:
        modelDropDownObj = {
            "name": self._model_summary.get_algorithm_name(),
            "evaluationMetricValue": accuracy, #locals()[evaluationMetricDict["name"]],
            "evaluationMetricName": "accuracy", # evaluationMetricDict["name"],
            "slug": self._model_summary.get_slug(),
            "Model Id": bestModelName
        }
        modelSummaryJson = {
            "dropdown": modelDropDownObj,
            "levelcount": self._model_summary.get_level_counts(),
            "modelFeatureList": self._model_summary.get_feature_list(),
            "levelMapping": self._model_summary.get_level_map_dict(),
            "slug": self._model_summary.get_slug(),
            "name": self._model_summary.get_algorithm_name()
        }

        mlpcCards = [json.loads(CommonUtils.convert_python_object_to_json(cardObj)) for cardObj in
                     MLUtils.create_model_summary_cards(self._model_summary)]
        for card in mlpcCards:
            self._prediction_narrative.add_a_card(card)

        self._result_setter.set_model_summary(
            {"sparkperceptron": json.loads(CommonUtils.convert_python_object_to_json(self._model_summary))})
        self._result_setter.set_spark_multilayer_perceptron_model_summary(modelSummaryJson)
        self._result_setter.set_spark_multilayer_perceptron_management_summary(modelManagementJson)
        self._result_setter.set_mlpc_cards(mlpcCards)

        CommonUtils.create_update_and_save_progress_message(self._dataframe_context, self._scriptWeightDict,
                                                            self._scriptStages, self._slug, "completion", "info",
                                                            display=True, emptyBin=False, customMsg=None,
                                                            weightKey="total")