def sign_block(block, key, randao_parent, vchash, skips): block.header.extra_data = \ randao_parent + \ utils.zpad(utils.encode_int(skips), 32) + \ vchash for val in utils.ecsign(block.header.signing_hash, key): block.header.extra_data += utils.zpad(utils.encode_int(val), 32) return block
def run(self, sender=None, to=None, code=None, gas=None): sender = normalize_address(sender) if sender else normalize_address(zpad('sender', 20)) to = normalize_address(to) if to else normalize_address(zpad('receiver', 20)) code = scan_bin(code) if code else '' gas = scan_int(gas) if gas else 10000000000000 msg = vm.Message(sender, to, gas=gas) ext = VMExt(self.state, Transaction(0, 0, 21000, b'', 0, b'')) result, gas_remained, data = _apply_msg(ext, msg, code) return bytearray_to_bytestr(data) if result else None
def test_block_18315_changes(): pre = {} toadd = [ [ '0x0000000000000000000000000000000000000000000000000000000000000000', '0xf9e88bc2b3203e764fe67b4d0f4171b7756117c8' ], [ '0x0000000000000000000000000000000000000000000000000000000000000001', '0x' ], [ '0x0000000000000000000000000000000000000000000000000000000000000002', '0x' ], ] db = RefcountDB(EphemDB()) db.logging = True NODES = 60 t1 = pruning_trie.Trie(db) t2 = pruning_trie.Trie(db) db.ttl = NODES * 2 c = 0 for k, v in pre.items(): triekey = utils.sha3(utils.zpad(k[2:].decode('hex'), 32)) t1.update(triekey, rlp.encode(v[2:].decode('hex'))) t2.update(triekey, rlp.encode(v[2:].decode('hex'))) db.commit_refcount_changes(c) db.cleanup(c) c += 1 sys.stderr.write('##############################\n') print(utils.encode_hex(t1.root_hash)) print(t1.to_dict()) for k, v in toadd: sys.stderr.write('kv: %s %s\n' % (k, v)) triekey = utils.sha3(utils.zpad(utils.decode_hex(k[2:]), 32)) if v == '0x': t1.delete(triekey) else: t1.update(triekey, rlp.encode(utils.decode_hex(v[2:]))) db.commit_refcount_changes(c) db.cleanup(c) c += 1 t1.clear_all() db.commit_refcount_changes(c) for i in range(db.ttl + 1): db.cleanup(c) c += 1 t3 = pruning_trie.Trie(db) t3.root_hash = t2.root_hash print(t3.to_dict())
def load_state(env, alloc): db = env.db state = SecureTrie(Trie(db, BLANK_ROOT)) count = 0 print("Start loading state from snapshot") for addr in alloc: print("[%d] loading account %s" % (count, addr)) account = alloc[addr] acct = Account.blank_account(db, env.config['ACCOUNT_INITIAL_NONCE']) if len(account['storage']) > 0: t = SecureTrie(Trie(db, BLANK_ROOT)) c = 0 for k in account['storage']: v = account['storage'][k] enckey = zpad(decode_hex(k), 32) t.update(enckey, decode_hex(v)) c += 1 if c % 1000 and len(db.db_service.uncommitted) > 50000: print("%d uncommitted. committing..." % len(db.db_service.uncommitted)) db.commit() acct.storage = t.root_hash if account['nonce']: acct.nonce = int(account['nonce']) if account['balance']: acct.balance = int(account['balance']) if account['code']: acct.code = decode_hex(account['code']) state.update(decode_hex(addr), rlp.encode(acct)) count += 1 db.commit() return state
def mine(block_number, difficulty, mining_hash, start_nonce=0, rounds=1000): assert utils.is_numeric(start_nonce) cache = get_cache(block_number) nonce = start_nonce target = utils.zpad( utils.int_to_big_endian(2**256 // (difficulty or 1) - 1), 32) for i in range(1, rounds + 1): bin_nonce = utils.zpad(utils.int_to_big_endian((nonce + i) & TT64M1), 8) o = hashimoto_light(block_number, cache, mining_hash, bin_nonce) if o[b'result'] <= target: log.debug('nonce found: {}'.format(bin_nonce)) assert len(bin_nonce) == 8 assert len(o[b'mix digest']) == 32 return bin_nonce, o[b'mix digest'] return None, None
def decode_event(self, log_topics, log_data): """ Return a dictionary representation the log. Note: This function won't work with anonymous events. Args: log_topics (List[bin]): The log's indexed arguments. log_data (bin): The encoded non-indexed arguments. """ # https://github.com/biblecoin/wiki/wiki/Biblecoin-Contract-ABI#function-selector-and-argument-encoding # topics[0]: keccak(EVENT_NAME+"("+EVENT_ARGS.map(canonical_type_of).join(",")+")") # If the event is declared as anonymous the topics[0] is not generated; if not len(log_topics) or log_topics[0] not in self.event_data: raise ValueError('Unknown log type') event_id_ = log_topics[0] event = self.event_data[event_id_] # data: abi_serialise(EVENT_NON_INDEXED_ARGS) # EVENT_NON_INDEXED_ARGS is the series of EVENT_ARGS that are not # indexed, abi_serialise is the ABI serialisation function used for # returning a series of typed values from a function. unindexed_types = [ type_ for type_, indexed in zip(event['types'], event['indexed']) if not indexed ] unindexed_args = decode_abi(unindexed_types, log_data) # topics[n]: EVENT_INDEXED_ARGS[n - 1] # EVENT_INDEXED_ARGS is the series of EVENT_ARGS that are indexed indexed_count = 1 # skip topics[0] result = {} for name, type_, indexed in zip( event['names'], event['types'], event['indexed']): if indexed: topic_bytes = utils.zpad( utils.encode_int(log_topics[indexed_count]), 32, ) indexed_count += 1 value = decode_single(process_type(type_), topic_bytes) else: value = unindexed_args.pop(0) result[name] = value result['_event_type'] = utils.to_string(event['name']) return result
def test_transaction(filename, testname, testdata): try: rlpdata = decode_hex(testdata["rlp"][2:]) o = {} tx = rlp.decode(rlpdata, transactions.Transaction) blknum = int(testdata["blocknumber"]) # if blknum >= config.default_config["HOMESTEAD_FORK_BLKNUM"]: # tx.check_low_s_homestead() assert config_fork_specific_validation(konfig, blknum, tx) assert tx.startgas >= tx.intrinsic_gas_used if tx.sender == null_address: assert tx.value == 0 and tx.gasprice == 0 and tx.nonce == 0 o["sender"] = tx.sender o["transaction"] = { "data": '0x' * (len(tx.data) > 0) + encode_hex(tx.data), "gasLimit": str(tx.startgas), "gasPrice": str(tx.gasprice), "nonce": str(tx.nonce), "r": '0x' + encode_hex(utils.zpad(utils.int_to_big_endian(tx.r), 32)), "s": '0x' + encode_hex(utils.zpad(utils.int_to_big_endian(tx.s), 32)), "v": str(tx.v), "value": str(tx.value), "to": encode_hex(tx.to), } except Exception as e: tx = None sys.stderr.write(str(e)) if 'transaction' not in testdata: # expected to fail # print(tx.to_dict(), testdata) assert tx is None else: assert set(o['transaction'].keys()) == set( testdata.get("transaction", dict()).keys()) o.get("transaction", None) == testdata.get("transaction", None) assert str_to_bytes(encode_hex(o.get("sender", ''))) == str_to_bytes( testdata.get("sender", ''))
def test_abi_encode_single_int(): assert abi.encode_single(['int', '256', []], -2 ** 255) == (b'\x80' + b'\x00' * 31) assert abi.encode_single( ['int', '256', []], (b'\x80' + b'\x00' * 31)) == (b'\x80' + b'\x00' * 31) assert abi.encode_single(['int', '8', []], -128)[-1:] == b'\x80' with pytest.raises(abi.ValueOutOfBounds): assert abi.encode_single(['int', '8', []], -129) assert abi.encode_single(['int', '8', []], 127) == zpad(b'\x7f', 32) with pytest.raises(abi.ValueOutOfBounds): assert abi.encode_single(['int', '8', []], 128)
def test_block_18503_changes(): pre = {'0x0c': '0x29d33c02a200937995e632c4597b4dca8e503978'} toadd = [ ['0x', '0x09'], ] db = RefcountDB(EphemDB()) db.logging = True NODES = 60 t1 = pruning_trie.Trie(db) t2 = pruning_trie.Trie(db) db.ttl = NODES * 2 c = 0 for k, v in pre.items(): triekey = utils.sha3(utils.zpad(utils.decode_hex(k[2:]), 32)) t1.update(triekey, rlp.encode(utils.decode_hex(v[2:]))) t2.update(triekey, rlp.encode(utils.decode_hex(v[2:]))) db.commit_refcount_changes(c) db.cleanup(c) c += 1 print(utils.encode_hex(t1.root_hash)) for k, v in toadd: sys.stderr.write('kv: %s %s\n' % (k, v)) triekey = utils.sha3(utils.zpad(utils.decode_hex(k[2:]), 32)) if v == '0x': t1.delete(triekey) else: t1.update(triekey, rlp.encode(utils.decode_hex(v[2:]))) db.commit_refcount_changes(c) db.cleanup(c) c += 1 t1.clear_all() db.commit_refcount_changes(c) for i in range(db.ttl + 1): db.cleanup(c) c += 1 t3 = pruning_trie.Trie(db) t3.root_hash = t2.root_hash print(t3.to_dict())
def format_message(msg, kwargs, highlight, level): if 'memory' in kwargs: vm.log_vm_op.memory = '0x' + kwargs['memory'] if 'storage' in kwargs: s = [] storage = kwargs['storage']['storage'] for k in sorted(storage.keys()): v = '0x' + encode_hex(zpad(int_to_big_endian(scan_int(storage[k])),32)) k = '0x' + encode_hex(zpad(int_to_big_endian(scan_int(k)),32)) s.append(k + ': ' + v) s = ','.join(s) vm.log_vm_op.storage = s return '{"pc":%s,"op":%s,"gas":"%s","gasCost":"%s","memory":"%s","stack":[%s],"storage":{%s},"depth":%s}' % ( kwargs['pc'], kwargs['inst'], encode_int(int(kwargs['gas'])), encode_int(kwargs['gas_cost']), vm.log_vm_op.memory, ','.join(['"%s"' % encode_int(v) for v in kwargs['stack']]), vm.log_vm_op.storage, kwargs['depth']+1 )
def encode_function_call(self, function_name, args): """ Return the encoded function call. Args: function_name (str): One of the existing functions described in the contract interface. args (List[object]): The function arguments that wll be encoded and used in the contract execution in the vm. Return: bin: The encoded function name and arguments so that it can be used with the evm to execute a funcion call, the binary string follows the Biblecoin Contract ABI. """ if function_name not in self.function_data: raise ValueError('Unkown function {}'.format(function_name)) description = self.function_data[function_name] function_selector = zpad(encode_int(description['prefix']), 4) arguments = encode_abi(description['encode_types'], args) return function_selector + arguments
def proc_modexp(ext, msg): if not ext.post_metropolis_hardfork(): return 1, msg.gas, [] print('modexp proc', msg.gas) baselen = msg.data.extract32(0) explen = msg.data.extract32(32) modlen = msg.data.extract32(64) first_exp_bytes = msg.data.extract32(96 + baselen) >> (8 * max(32 - explen, 0)) bitlength = -1 while first_exp_bytes: bitlength += 1 first_exp_bytes >>= 1 adjusted_explen = max(bitlength, 0) + 8 * max(explen - 32, 0) gas_cost = (mult_complexity(max(modlen, baselen)) * max(adjusted_explen, 1)) // opcodes.GMODEXPQUADDIVISOR print(baselen, explen, modlen, 'expected gas cost', gas_cost) if msg.gas < gas_cost: return 0, 0, [] if baselen == 0: return 1, msg.gas - gas_cost, [0] * modlen if modlen == 0: return 1, msg.gas - gas_cost, [] base = bytearray(baselen) msg.data.extract_copy(base, 0, 96, baselen) exp = bytearray(explen) msg.data.extract_copy(exp, 0, 96 + baselen, explen) mod = bytearray(modlen) msg.data.extract_copy(mod, 0, 96 + baselen + explen, modlen) if utils.big_endian_to_int(mod) == 0: return 1, msg.gas - gas_cost, [0] * modlen o = pow(utils.big_endian_to_int(base), utils.big_endian_to_int(exp), utils.big_endian_to_int(mod)) return 1, msg.gas - \ gas_cost, [ safe_ord(x) for x in utils.zpad( utils.int_to_big_endian(o), modlen)]
def encode_hex_from_int(x): return encode_hex(utils.zpad(utils.int_to_big_endian(x), 256))
def b64(int_bloom): "returns b256" return utils.zpad(utils.int_to_big_endian(int_bloom), 256)
def test_mcopy2(): c = tester.Chain() contract = c.contract(mcopy_code_2, language='serpent') assert contract.mcopy_test() == \ b''.join([utils.zpad(utils.int_to_big_endian(x), 32) for x in [99, 111, 119]])
def sub1(b): v = utils.big_endian_to_int(b) return utils.zpad(utils.encode_int(v - 1), 4)
def encode_single(typ, arg): # pylint: disable=too-many-return-statements,too-many-branches,too-many-statements,too-many-locals """ Encode `arg` as `typ`. `arg` will be encoded in a best effort manner, were necessary the function will try to correctly define the underlying binary representation (ie. decoding a hex-encoded address/hash). Args: typ (Tuple[(str, int, list)]): A 3-tuple defining the `arg` type. The first element defines the type name. The second element defines the type length in bits. The third element defines if it's an array type. Together the first and second defines the elementary type, the third element must be present but is ignored. Valid type names are: - uint - int - bool - ufixed - fixed - string - bytes - hash - address arg (object): The object to be encoded, it must be a python object compatible with the `typ`. Raises: ValueError: when an invalid `typ` is supplied. ValueOutOfBounds: when `arg` cannot be encoded as `typ` because of the binary contraints. Note: This function don't work with array types, for that use the `enc` function. """ base, sub, _ = typ if base == 'uint': sub = int(sub) if not (0 < sub <= 256 and sub % 8 == 0): raise ValueError( 'invalid unsigned integer bit length {}'.format(sub)) try: i = decint(arg, signed=False) except EncodingError: # arg is larger than 2**256 raise ValueOutOfBounds(repr(arg)) if not 0 <= i < 2 ** sub: raise ValueOutOfBounds(repr(arg)) value_encoded = int_to_big_endian(i) return zpad(value_encoded, 32) if base == 'int': sub = int(sub) bits = sub - 1 if not (0 < sub <= 256 and sub % 8 == 0): raise ValueError('invalid integer bit length {}'.format(sub)) try: i = decint(arg, signed=True) except EncodingError: # arg is larger than 2**255 raise ValueOutOfBounds(repr(arg)) if not -2 ** bits <= i < 2 ** bits: raise ValueOutOfBounds(repr(arg)) value = i % 2 ** 256 # convert negative to "equivalent" positive value_encoded = int_to_big_endian(value) return zpad(value_encoded, 32) if base == 'bool': if arg is True: value_encoded = int_to_big_endian(1) elif arg is False: value_encoded = int_to_big_endian(0) else: raise ValueError('%r is not bool' % arg) return zpad(value_encoded, 32) if base == 'ufixed': sub = str(sub) # pylint: disable=redefined-variable-type high_str, low_str = sub.split('x') high = int(high_str) low = int(low_str) if not (0 < high + low <= 256 and high % 8 == 0 and low % 8 == 0): raise ValueError('invalid unsigned fixed length {}'.format(sub)) if not 0 <= arg < 2 ** high: raise ValueOutOfBounds(repr(arg)) float_point = arg * 2 ** low fixed_point = int(float_point) return zpad(int_to_big_endian(fixed_point), 32) if base == 'fixed': sub = str(sub) # pylint: disable=redefined-variable-type high_str, low_str = sub.split('x') high = int(high_str) low = int(low_str) bits = high - 1 if not (0 < high + low <= 256 and high % 8 == 0 and low % 8 == 0): raise ValueError('invalid unsigned fixed length {}'.format(sub)) if not -2 ** bits <= arg < 2 ** bits: raise ValueOutOfBounds(repr(arg)) float_point = arg * 2 ** low fixed_point = int(float_point) value = fixed_point % 2 ** 256 return zpad(int_to_big_endian(value), 32) # Decimals if base == 'decimal': val_to_encode = int(arg * 10**int(sub)) return zpad(encode_int(val_to_encode % 2**256), 32) if base == 'string': if isinstance(arg, utils.unicode): arg = arg.encode('utf8') else: try: arg.decode('utf8') except UnicodeDecodeError: raise ValueError('string must be utf8 encoded') if len(sub): # fixed length if not 0 <= len(arg) <= int(sub): raise ValueError('invalid string length {}'.format(sub)) if not 0 <= int(sub) <= 32: raise ValueError('invalid string length {}'.format(sub)) return rzpad(arg, 32) if not 0 <= len(arg) < TT256: raise Exception('Integer invalid or out of range: %r' % arg) length_encoded = zpad(int_to_big_endian(len(arg)), 32) value_encoded = rzpad(arg, utils.ceil32(len(arg))) return length_encoded + value_encoded if base == 'bytes': if not is_string(arg): if isinstance(arg, str): arg = bytes(arg, 'utf8') else: raise EncodingError('Expecting string: %r' % arg) arg = utils.to_string(arg) # py2: force unicode into str if len(sub): # fixed length if not 0 <= len(arg) <= int(sub): raise ValueError('string must be utf8 encoded') if not 0 <= int(sub) <= 32: raise ValueError('string must be utf8 encoded') return rzpad(arg, 32) if not 0 <= len(arg) < TT256: raise Exception('Integer invalid or out of range: %r' % arg) length_encoded = zpad(int_to_big_endian(len(arg)), 32) value_encoded = rzpad(arg, utils.ceil32(len(arg))) return length_encoded + value_encoded if base == 'hash': if not (int(sub) and int(sub) <= 32): raise EncodingError('too long: %r' % arg) if is_numeric(arg): return zpad(encode_int(arg), 32) if len(arg) == int(sub): return zpad(arg, 32) if len(arg) == int(sub) * 2: return zpad(decode_hex(arg), 32) raise EncodingError('Could not parse hash: %r' % arg) if base == 'address': assert sub == '' if is_numeric(arg): return zpad(encode_int(arg), 32) if len(arg) == 20: return zpad(arg, 32) if len(arg) == 40: return zpad(decode_hex(arg), 32) if len(arg) == 42 and arg[:2] == '0x': return zpad(decode_hex(arg[2:]), 32) raise EncodingError('Could not parse address: %r' % arg) raise EncodingError('Unhandled type: %r %r' % (base, sub))
def add1(b): v = utils.big_endian_to_int(b) return utils.zpad(utils.encode_int(v + 1), 4)
from rlp.utils import decode_hex from biblecoin import utils from biblecoin.db import BaseDB, EphemDB from biblecoin.child_dao_list import L as child_dao_list import copy default_config = dict( # Genesis block difficulty GENESIS_DIFFICULTY=131072, # Genesis block gas limit GENESIS_GAS_LIMIT=3141592, # Genesis block prevhash, coinbase, nonce GENESIS_PREVHASH=b'\x00' * 32, GENESIS_COINBASE=b'\x00' * 20, GENESIS_NONCE=utils.zpad(utils.encode_int(42), 8), GENESIS_MIXHASH=b'\x00' * 32, GENESIS_TIMESTAMP=0, GENESIS_EXTRA_DATA=b'', GENESIS_INITIAL_ALLOC={}, # Minimum gas limit MIN_GAS_LIMIT=5000, MAX_GAS_LIMIT=2**63 - 1, # Gas limit adjustment algo: # block.gas_limit=block.parent.gas_limit * 1023/1024 + # (block.gas_used * 6 / 5) / 1024 GASLIMIT_EMA_FACTOR=1024, GASLIMIT_ADJMAX_FACTOR=1024, BLOCK_GAS_LIMIT=4712388, BLKLIM_FACTOR_NOM=3, BLKLIM_FACTOR_DEN=2,