def test_RadianceObj_1axis_gendaylit_end_to_end(): # 1-axis tracking end-to-end test with torque tube and gap generation. # Takes 20 seconds for 2-sensor scan module_height = 1.95 * 2 + 0.1 # module portrait dimension in meters gcr = 0.35 # ground cover ratio, = module_height / pitch albedo = 0.3 # ground albedo hub_height = 2 # tracker height at 0 tilt in meters (hub height) demo = RadianceObj() # Create a RadianceObj 'object' demo.setGround( albedo ) # input albedo number or material name like 'concrete'. To see options, run this without any input. metdata = demo.readEPW( MET_FILENAME) # read in the EPW weather data from above #metdata = demo.readTMY(MET_FILENAME2) # select a TMY file using graphical picker # create metdata files for each condition. keys are timestamps for gendaylit workflow trackerdict = demo.set1axis(cumulativesky=False) # create the skyfiles needed for 1-axis tracking demo.gendaylit1axis(metdata=metdata, enddate='01/01') # test modules with gap and rear tube demo.makeModule(name='Longi_torquetube', x=0.984, y=1.95, torquetube=True, numpanels=2, panelgap=0.1) #demo.makeModule(name='Longi_torquetube',x=0.984,y=1.95) # set module type to be used and passed into makeScene1axis module_type = 'Longi_torquetube' # Create the scene for the 1-axis tracking sceneDict = { 'pitch': module_height / gcr, 'height': hub_height, 'orientation': 'portrait' } key = '01_01_11' demo.makeScene1axis( {key: trackerdict[key]}, module_type, sceneDict, cumulativesky=False, nMods=10, nRows=3, modwanted=3, rowwanted=3, sensorsy=2 ) #makeScene creates a .rad file with 20 modules per row, 7 rows. demo.makeOct1axis(trackerdict, key) # just run this for one timestep: Jan 1 11am demo.analysis1axis(trackerdict, key) # just run this for one timestep: Jan 1 11am assert (np.mean(demo.Wm2Front) == pytest.approx(214.0, 0.01)) assert (np.mean(demo.Wm2Back) == pytest.approx(40.0, 0.1))
# create cumulativesky functions for each tracker angle: demo.genCumSky1axis trackerdict = demo.genCumSky1axis(trackerdict) # Create a new moduletype: Prism Solar Bi60. width = .984m height = 1.695m. Bifaciality = 0.90 demo.makeModule(name='Prism Solar Bi60', x=0.984, y=module_height, bifi=0.90) # print available module types demo.printModules() # create a 1-axis scene using panels in portrait, 2m hub height, 0.33 GCR. NOTE: clearance needs to be calculated at each step. hub height is constant sceneDict = { 'pitch': module_height / gcr, 'height': hub_height, 'orientation': 'portrait' } module_type = 'Prism Solar Bi60' trackerdict = demo.makeScene1axis( trackerdict, module_type, sceneDict, nMods=20, nRows=7) #makeScene creates a .rad file with 20 modules per row, 7 rows. trackerdict = demo.makeOct1axis(trackerdict) # Now we need to run analysis and combine the results into an annual total. This can be done by calling scene.frontscan and scene.backscan trackerdict = demo.analysis1axis(trackerdict) # the frontscan and backscan include a linescan along a chord of the module, both on the front and back. # Return the minimum of the irradiance ratio, and the average of the irradiance ratio along a chord of the module. print('Annual RADIANCE bifacial ratio for 1-axis tracking: %0.3f - %0.3f' % (min(demo.backRatio), np.mean(demo.backRatio))) ''' Now run the analysis using bifacialVF !