def _upload_results_to_bq(rows): """Upload test results to a BQ table. Args: rows: A list of dictionaries containing data for each row to insert """ bq = big_query_utils.create_big_query() big_query_utils.create_partitioned_table( bq, _PROJECT_ID, _DATASET_ID, _TABLE_ID, _RESULTS_SCHEMA, _DESCRIPTION, partition_type=_PARTITION_TYPE, expiration_ms=_EXPIRATION_MS) max_retries = 3 for attempt in range(max_retries): if big_query_utils.insert_rows(bq, _PROJECT_ID, _DATASET_ID, _TABLE_ID, rows): break else: if attempt < max_retries - 1: print('Error uploading result to bigquery, will retry.') else: print( 'Error uploading result to bigquery, all attempts failed.') sys.exit(1)
def _insert_result(bq, dataset_id, table_id, scenario_result, flatten=True): if flatten: _flatten_result_inplace(scenario_result) _populate_metadata_inplace(scenario_result) row = big_query_utils.make_row(str(uuid.uuid4()), scenario_result) return big_query_utils.insert_rows(bq, _PROJECT_ID, dataset_id, table_id, [row])
def upload_results_to_bq(resultset, bq_table, args, platform): """Upload test results to a BQ table. Args: resultset: dictionary generated by jobset.run bq_table: string name of table to create/upload results to in BQ args: args in run_tests.py, generated by argparse platform: string name of platform tests were run on """ bq = big_query_utils.create_big_query() big_query_utils.create_partitioned_table(bq, _PROJECT_ID, _DATASET_ID, bq_table, _RESULTS_SCHEMA, _DESCRIPTION, partition_type=_PARTITION_TYPE, expiration_ms= _EXPIRATION_MS) for shortname, results in six.iteritems(resultset): for result in results: test_results = {} _get_build_metadata(test_results) test_results['compiler'] = args.compiler test_results['config'] = args.config test_results['cpu_estimated'] = result.cpu_estimated test_results['cpu_measured'] = result.cpu_measured test_results['elapsed_time'] = '%.2f' % result.elapsed_time test_results['iomgr_platform'] = args.iomgr_platform # args.language is a list, but will always have one element in the contexts # this function is used. test_results['language'] = args.language[0] test_results['platform'] = platform test_results['result'] = result.state test_results['test_name'] = shortname test_results['timestamp'] = time.strftime('%Y-%m-%d %H:%M:%S') row = big_query_utils.make_row(str(uuid.uuid4()), test_results) if not big_query_utils.insert_rows(bq, _PROJECT_ID, _DATASET_ID, bq_table, [row]): print('Error uploading result to bigquery.') sys.exit(1)
def _upload_results_to_bq(rows): """Upload test results to a BQ table. Args: rows: A list of dictionaries containing data for each row to insert """ bq = big_query_utils.create_big_query() big_query_utils.create_partitioned_table(bq, _PROJECT_ID, _DATASET_ID, _TABLE_ID, _RESULTS_SCHEMA, _DESCRIPTION, partition_type=_PARTITION_TYPE, expiration_ms=_EXPIRATION_MS) max_retries = 3 for attempt in range(max_retries): if big_query_utils.insert_rows(bq, _PROJECT_ID, _DATASET_ID, _TABLE_ID, rows): break else: if attempt < max_retries - 1: print('Error uploading result to bigquery, will retry.') else: print( 'Error uploading result to bigquery, all attempts failed.') sys.exit(1)
def upload_result(result_list, metadata): for result in result_list: new_result = copy.deepcopy(result) new_result['metadata'] = metadata bq = big_query_utils.create_big_query() row = big_query_utils.make_row(str(uuid.uuid4()), new_result) if not big_query_utils.insert_rows(bq, _PROJECT_ID, _DATASET, _TABLE + "$" + _NOW, [row]): print 'Error when uploading result', new_result
def upload_results_to_bq(resultset, bq_table, args, platform): """Upload test results to a BQ table. Args: resultset: dictionary generated by jobset.run bq_table: string name of table to create/upload results to in BQ args: args in run_tests.py, generated by argparse platform: string name of platform tests were run on """ bq = big_query_utils.create_big_query() big_query_utils.create_partitioned_table(bq, _PROJECT_ID, _DATASET_ID, bq_table, _RESULTS_SCHEMA, _DESCRIPTION, partition_type=_PARTITION_TYPE, expiration_ms=_EXPIRATION_MS) for shortname, results in six.iteritems(resultset): for result in results: test_results = {} _get_build_metadata(test_results) test_results['compiler'] = args.compiler test_results['config'] = args.config test_results['cpu_estimated'] = result.cpu_estimated test_results['cpu_measured'] = result.cpu_measured test_results['elapsed_time'] = '%.2f' % result.elapsed_time test_results['iomgr_platform'] = args.iomgr_platform # args.language is a list, but will always have one element in the contexts # this function is used. test_results['language'] = args.language[0] test_results['platform'] = platform test_results['result'] = result.state test_results['return_code'] = result.returncode test_results['test_name'] = shortname test_results['timestamp'] = time.strftime('%Y-%m-%d %H:%M:%S') row = big_query_utils.make_row(str(uuid.uuid4()), test_results) # TODO(jtattermusch): rows are inserted one by one, very inefficient max_retries = 3 for attempt in range(max_retries): if big_query_utils.insert_rows(bq, _PROJECT_ID, _DATASET_ID, bq_table, [row]): break else: if attempt < max_retries - 1: print( 'Error uploading result to bigquery, will retry.') else: print( 'Error uploading result to bigquery, all attempts failed.' ) sys.exit(1)
def upload_interop_results_to_bq(resultset, bq_table, args): """Upload interop test results to a BQ table. Args: resultset: dictionary generated by jobset.run bq_table: string name of table to create/upload results to in BQ args: args in run_interop_tests.py, generated by argparse """ bq = big_query_utils.create_big_query() big_query_utils.create_partitioned_table(bq, _PROJECT_ID, _DATASET_ID, bq_table, _INTEROP_RESULTS_SCHEMA, _DESCRIPTION, partition_type=_PARTITION_TYPE, expiration_ms=_EXPIRATION_MS) for shortname, results in six.iteritems(resultset): bq_rows = [] for result in results: test_results = {} _get_build_metadata(test_results) test_results['elapsed_time'] = '%.2f' % result.elapsed_time test_results['result'] = result.state test_results['test_name'] = shortname test_results['suite'] = shortname.split(':')[0] test_results['client'] = shortname.split(':')[1] test_results['server'] = shortname.split(':')[2] test_results['test_case'] = shortname.split(':')[3] test_results['timestamp'] = time.strftime('%Y-%m-%d %H:%M:%S') row = big_query_utils.make_row(str(uuid.uuid4()), test_results) bq_rows.append(row) # BigQuery sometimes fails with large uploads, so batch 1,000 rows at a time. for i in range((len(bq_rows) / 1000) + 1): max_retries = 3 for attempt in range(max_retries): if big_query_utils.insert_rows( bq, _PROJECT_ID, _DATASET_ID, bq_table, bq_rows[i * 1000:(i + 1) * 1000]): break else: if attempt < max_retries - 1: print( 'Error uploading result to bigquery, will retry.') else: print( 'Error uploading result to bigquery, all attempts failed.' ) sys.exit(1)
def insert_qps_row(self, qps, recorded_at): row_values_dict = { 'run_id': self.run_id, 'pod_name': self.pod_name, 'recorded_at': recorded_at, 'qps': qps } # row_unique_id is something that uniquely identifies the row (BigQuery uses # it for duplicate detection). row_unique_id = '%s_%s_%s' % (self.run_id, self.pod_name, recorded_at) row = bq_utils.make_row(row_unique_id, row_values_dict) return bq_utils.insert_rows(self.bq, self.project_id, self.dataset_id, self.qps_table_id, [row])
def insert_summary_row(self, event_type, details): row_values_dict = { 'run_id': self.run_id, 'image_type': self.image_type, 'pod_name': self.pod_name, 'event_date': datetime.datetime.now().isoformat(), 'event_type': event_type, 'details': details } # row_unique_id is something that uniquely identifies the row (BigQuery uses # it for duplicate detection). row_unique_id = '%s_%s_%s' % (self.run_id, self.pod_name, event_type) row = bq_utils.make_row(row_unique_id, row_values_dict) return bq_utils.insert_rows(self.bq, self.project_id, self.dataset_id, self.summary_table_id, [row])
def _insert_scenario_result(bq, dataset_id, table_id, scenario_result, test_metadata_file, node_info_file, prometheus_query_results_file, flatten=True): if flatten: _flatten_result_inplace(scenario_result) _populate_metadata_from_file(scenario_result, test_metadata_file) _populate_node_metadata_from_file(scenario_result, node_info_file) _populate_prometheus_query_results_from_file(scenario_result, prometheus_query_results_file) row = big_query_utils.make_row(str(uuid.uuid4()), scenario_result) return big_query_utils.insert_rows(bq, _PROJECT_ID, dataset_id, table_id, [row])
def upload_interop_results_to_bq(resultset, bq_table, args): """Upload interop test results to a BQ table. Args: resultset: dictionary generated by jobset.run bq_table: string name of table to create/upload results to in BQ args: args in run_interop_tests.py, generated by argparse """ bq = big_query_utils.create_big_query() big_query_utils.create_partitioned_table( bq, _PROJECT_ID, _DATASET_ID, bq_table, _INTEROP_RESULTS_SCHEMA, _DESCRIPTION, partition_type=_PARTITION_TYPE, expiration_ms=_EXPIRATION_MS) for shortname, results in six.iteritems(resultset): for result in results: test_results = {} _get_build_metadata(test_results) test_results['elapsed_time'] = '%.2f' % result.elapsed_time test_results['result'] = result.state test_results['test_name'] = shortname test_results['suite'] = shortname.split(':')[0] test_results['client'] = shortname.split(':')[1] test_results['server'] = shortname.split(':')[2] test_results['test_case'] = shortname.split(':')[3] test_results['timestamp'] = time.strftime('%Y-%m-%d %H:%M:%S') row = big_query_utils.make_row(str(uuid.uuid4()), test_results) # TODO(jtattermusch): rows are inserted one by one, very inefficient max_retries = 3 for attempt in range(max_retries): if big_query_utils.insert_rows(bq, _PROJECT_ID, _DATASET_ID, bq_table, [row]): break else: if attempt < max_retries - 1: print('Error uploading result to bigquery, will retry.') else: print( 'Error uploading result to bigquery, all attempts failed.' ) sys.exit(1)
def _insert_rows_with_retries(bq, bq_table, bq_rows): """Insert rows to bq table. Retry on error.""" # BigQuery sometimes fails with large uploads, so batch 1,000 rows at a time. for i in range((len(bq_rows) / 1000) + 1): max_retries = 3 for attempt in range(max_retries): if big_query_utils.insert_rows(bq, _PROJECT_ID, _DATASET_ID, bq_table, bq_rows[i * 1000:(i + 1) * 1000]): break else: if attempt < max_retries - 1: print('Error uploading result to bigquery, will retry.') else: print( 'Error uploading result to bigquery, all attempts failed.' ) sys.exit(1)
def upload_results_to_bq(resultset, bq_table, args, platform): """Upload test results to a BQ table. Args: resultset: dictionary generated by jobset.run bq_table: string name of table to create/upload results to in BQ args: args in run_tests.py, generated by argparse platform: string name of platform tests were run on """ bq = big_query_utils.create_big_query() big_query_utils.create_table(bq, _PROJECT_ID, _DATASET_ID, bq_table, _RESULTS_SCHEMA, _DESCRIPTION) for shortname, results in six.iteritems(resultset): for result in results: test_results = {} _get_build_metadata(test_results) test_results['compiler'] = args.compiler test_results['config'] = args.config test_results['cpu_estimated'] = result.cpu_estimated test_results['cpu_measured'] = result.cpu_measured test_results['elapsed_time'] = '%.2f' % result.elapsed_time test_results['iomgr_platform'] = args.iomgr_platform # args.language is a list, but will always have one element in the contexts # this function is used. test_results['language'] = args.language[0] test_results['platform'] = platform test_results['result'] = result.state test_results['test_name'] = shortname test_results['timestamp'] = time.strftime('%Y-%m-%d %H:%M:%S') row = big_query_utils.make_row(str(uuid.uuid4()), test_results) if not big_query_utils.insert_rows(bq, _PROJECT_ID, _DATASET_ID, bq_table, [row]): print('Error uploading result to bigquery.') sys.exit(1)
last_complete_build_number = job.get_last_completed_buildnumber() # To avoid processing all builds for a project never looked at. In this case, # only examine 10 latest builds. starting_build_number = max(last_processed_build_number+1, last_complete_build_number-9) for build_number in xrange(starting_build_number, last_complete_build_number+1): print('====> Processing %s build %d.' % (build_name, build_number)) build = None try: build = job.get_build_metadata(build_number) except KeyError: print('====> Build %s is missing. Skip.' % build_number) continue build_result = {'build_number': build_number, 'timestamp': str(build.get_timestamp())} url_base = json_url = '%s/%s/%d' % (_URL_BASE, build_name, build_number) if _BUILDS[build_name]: # The build has matrix, such as gRPC_master. build_result['matrix'] = _process_matrix(build, url_base) else: json_url = '%s/testReport/api/json' % url_base console_url = '%s/consoleFull' % url_base build_result['duration'] = build.get_duration().total_seconds() build_result.update(_process_build(json_url, console_url)) rows = [big_query_utils.make_row(build_number, build_result)] if not big_query_utils.insert_rows(bq, _PROJECT_ID, _DATASET_ID, build_name, rows): print '====> Error uploading result to bigquery.' sys.exit(1)