def __init__(self, model, api=None): if not (isinstance(model, dict) and 'resource' in model and model['resource'] is not None): if api is None: api = BigML(storage=STORAGE) self.resource_id = get_model_id(model) if self.resource_id is None: raise Exception(error_message(model, resource_type='model', method='get')) query_string = ONLY_MODEL model = retrieve_model(api, self.resource_id, query_string=query_string) BaseModel.__init__(self, model, api=api) if ('object' in model and isinstance(model['object'], dict)): model = model['object'] if ('model' in model and isinstance(model['model'], dict)): status = get_status(model) if ('code' in status and status['code'] == FINISHED): self.tree = Tree( model['model']['root'], self.fields, self.objective_field) else: raise Exception("The model isn't finished yet") else: raise Exception("Cannot create the Model instance. Could not" " find the 'model' key in the resource:\n\n%s" % model)
def __init__(self, ensemble, api=None, max_models=None): if api is None: self.api = BigML(storage=STORAGE) else: self.api = api self.ensemble_id = None if isinstance(ensemble, list): try: models = [get_model_id(model) for model in ensemble] except ValueError: raise ValueError('Failed to verify the list of models. Check ' 'your model id values.') self.distributions = None else: self.ensemble_id = get_ensemble_id(ensemble) ensemble = check_resource(ensemble, self.api.get_ensemble) models = ensemble['object']['models'] self.distributions = ensemble['object'].get('distributions', None) self.model_ids = models self.fields = self.all_model_fields() number_of_models = len(models) if max_models is None: self.models_splits = [models] else: self.models_splits = [models[index:(index + max_models)] for index in range(0, number_of_models, max_models)] if len(self.models_splits) == 1: models = [retrieve_resource(self.api, model_id, query_string=ONLY_MODEL) for model_id in self.models_splits[0]] self.multi_model = MultiModel(models, self.api)
def __init__(self, model, api=None): if (isinstance(model, dict) and 'resource' in model and model['resource'] is not None): self.resource_id = model['resource'] else: if api is None: api = BigML(storage=STORAGE) self.resource_id = get_model_id(model) if self.resource_id is None: raise Exception(error_message(model, resource_type='model', method='get')) model = retrieve_model(api, self.resource_id) if ('object' in model and isinstance(model['object'], dict)): model = model['object'] if ('model' in model and isinstance(model['model'], dict)): status = get_status(model) if ('code' in status and status['code'] == FINISHED): if 'model_fields' in model['model']: fields = model['model']['model_fields'] # pagination or exclusion might cause a field not to # be in available fields dict if not all(key in model['model']['fields'] for key in fields.keys()): raise Exception("Some fields are missing" " to generate a local model." " Please, provide a model with" " the complete list of fields.") for field in fields: field_info = model['model']['fields'][field] fields[field]['summary'] = field_info['summary'] fields[field]['name'] = field_info['name'] else: fields = model['model']['fields'] self.inverted_fields = invert_dictionary(fields) self.all_inverted_fields = invert_dictionary(model['model'] ['fields']) self.tree = Tree( model['model']['root'], fields, model['objective_fields']) self.description = model['description'] self.field_importance = model['model'].get('importance', None) if self.field_importance: self.field_importance = [element for element in self.field_importance if element[0] in fields] self.locale = model.get('locale', DEFAULT_LOCALE) else: raise Exception("The model isn't finished yet") else: raise Exception("Cannot create the Model instance. Could not" " find the 'model' key in the resource:\n\n%s" % model)
def __init__(self, model, api=None): if check_model_structure(model): self.resource_id = model["resource"] else: # If only the model id is provided, the short version of the model # resource is used to build a basic summary of the model if api is None: api = BigML() self.resource_id = get_model_id(model) if self.resource_id is None: raise Exception(api.error_message(model, resource_type="model", method="get")) query_string = ONLY_MODEL model = retrieve_resource(api, self.resource_id, query_string=query_string) # Stored copies of the model structure might lack some necessary # keys if not check_model_structure(model): model = api.get_model(self.resource_id, query_string=query_string) if "object" in model and isinstance(model["object"], dict): model = model["object"] if "model" in model and isinstance(model["model"], dict): status = get_status(model) if "code" in status and status["code"] == FINISHED: if "model_fields" in model["model"] or "fields" in model["model"]: fields = model["model"].get("model_fields", model["model"].get("fields", [])) # pagination or exclusion might cause a field not to # be in available fields dict if not all(key in model["model"]["fields"] for key in fields.keys()): raise Exception( "Some fields are missing" " to generate a local model." " Please, provide a model with" " the complete list of fields." ) for field in fields: field_info = model["model"]["fields"][field] if "summary" in field_info: fields[field]["summary"] = field_info["summary"] fields[field]["name"] = field_info["name"] objective_field = model["objective_fields"] ModelFields.__init__(self, fields, objective_id=extract_objective(objective_field)) self.description = model["description"] self.field_importance = model["model"].get("importance", None) if self.field_importance: self.field_importance = [element for element in self.field_importance if element[0] in fields] self.locale = model.get("locale", DEFAULT_LOCALE) else: raise Exception("The model isn't finished yet") else: raise Exception( "Cannot create the BaseModel instance. Could not" " find the 'model' key in the resource:\n\n%s" % model )
def __init__(self, model, api=None): if not (isinstance(model, dict) and 'resource' in model and model['resource'] is not None): if api is None: api = BigML(storage=STORAGE) self.resource_id = get_model_id(model) if self.resource_id is None: raise Exception( api.error_message(model, resource_type='model', method='get')) query_string = ONLY_MODEL model = retrieve_model(api, self.resource_id, query_string=query_string) BaseModel.__init__(self, model, api=api) if ('object' in model and isinstance(model['object'], dict)): model = model['object'] if ('model' in model and isinstance(model['model'], dict)): status = get_status(model) if ('code' in status and status['code'] == FINISHED): distribution = model['model']['distribution']['training'] self.ids_map = {} self.tree = Tree(model['model']['root'], self.fields, objective_field=self.objective_field, root_distribution=distribution, parent_id=None, ids_map=self.ids_map) self.terms = {} else: raise Exception("The model isn't finished yet") else: raise Exception("Cannot create the Model instance. Could not" " find the 'model' key in the resource:\n\n%s" % model) if self.tree.regression: try: import numpy import scipy self.regression_ready = True except ImportError: self.regression_ready = False
def __init__(self, model, api=None): if not (isinstance(model, dict) and 'resource' in model and model['resource'] is not None): if api is None: api = BigML(storage=STORAGE) self.resource_id = get_model_id(model) if self.resource_id is None: raise Exception(api.error_message(model, resource_type='model', method='get')) query_string = ONLY_MODEL model = retrieve_model(api, self.resource_id, query_string=query_string) BaseModel.__init__(self, model, api=api) if ('object' in model and isinstance(model['object'], dict)): model = model['object'] if ('model' in model and isinstance(model['model'], dict)): status = get_status(model) if ('code' in status and status['code'] == FINISHED): distribution = model['model']['distribution']['training'] self.ids_map = {} self.tree = Tree( model['model']['root'], self.fields, objective_field=self.objective_field, root_distribution=distribution, parent_id=None, ids_map=self.ids_map) self.terms = {} else: raise Exception("The model isn't finished yet") else: raise Exception("Cannot create the Model instance. Could not" " find the 'model' key in the resource:\n\n%s" % model) if self.tree.regression: try: import numpy import scipy self.regression_ready = True except ImportError: self.regression_ready = False
def are_models_created(path, number_of_models, api): """Reads the model ids from the models file in the path directory """ model_ids = [] try: with open("%s%smodels" % (path, os.sep)) as models_file: for line in models_file: model = line.strip() try: model_id = api.get_model_id(model) model_ids.append(model_id) except ValueError: return False, model_ids if len(model_ids) == number_of_models: return True, model_ids else: return False, model_ids except IOError: return False, model_ids
def __init__(self, model, api=None): if check_model_structure(model): self.resource_id = model['resource'] else: # If only the model id is provided, the short version of the model # resource is used to build a basic summary of the model if api is None: api = BigML() self.resource_id = get_model_id(model) if self.resource_id is None: raise Exception(api.error_message(model, resource_type='model', method='get')) query_string = ONLY_MODEL model = retrieve_resource(api, self.resource_id, query_string=query_string) # Stored copies of the model structure might lack some necessary # keys if not check_model_structure(model): model = api.get_model(self.resource_id, query_string=query_string) if 'object' in model and isinstance(model['object'], dict): model = model['object'] if 'model' in model and isinstance(model['model'], dict): status = get_status(model) if 'code' in status and status['code'] == FINISHED: if ('model_fields' in model['model'] or 'fields' in model['model']): fields = model['model'].get('model_fields', model['model'].get('fields', [])) # pagination or exclusion might cause a field not to # be in available fields dict if not all(key in model['model']['fields'] for key in fields.keys()): raise Exception("Some fields are missing" " to generate a local model." " Please, provide a model with" " the complete list of fields.") for field in fields: field_info = model['model']['fields'][field] if 'summary' in field_info: fields[field]['summary'] = field_info['summary'] fields[field]['name'] = field_info['name'] objective_field = model['objective_fields'] ModelFields.__init__( self, fields, objective_id=extract_objective(objective_field)) self.description = model['description'] self.field_importance = model['model'].get('importance', None) if self.field_importance: self.field_importance = [element for element in self.field_importance if element[0] in fields] self.locale = model.get('locale', DEFAULT_LOCALE) else: raise Exception("The model isn't finished yet") else: raise Exception("Cannot create the BaseModel instance. Could not" " find the 'model' key in the resource:\n\n%s" % model)
def __init__(self, model, api=None): """The Model constructor can be given as first argument: - a model structure - a model id - a path to a JSON file containing a model structure """ # the string can be a path to a JSON file if isinstance(model, basestring): try: with open(model) as model_file: model = json.load(model_file) self.resource_id = get_model_id(model) if self.resource_id is None: raise ValueError("The JSON file does not seem" " to contain a valid BigML model" " representation.") except IOError: # if it is not a path, it can be a model id self.resource_id = get_model_id(model) if self.resource_id is None: if model.find('model/') > -1: raise Exception( api.error_message(model, resource_type='model', method='get')) else: raise IOError("Failed to open the expected JSON file" " at %s" % model) except ValueError: raise ValueError("Failed to interpret %s." " JSON file expected.") if not (isinstance(model, dict) and 'resource' in model and model['resource'] is not None): if api is None: api = BigML(storage=STORAGE) query_string = ONLY_MODEL model = retrieve_resource(api, self.resource_id, query_string=query_string) BaseModel.__init__(self, model, api=api) if 'object' in model and isinstance(model['object'], dict): model = model['object'] if 'model' in model and isinstance(model['model'], dict): status = get_status(model) if 'code' in status and status['code'] == FINISHED: distribution = model['model']['distribution']['training'] self.ids_map = {} self.tree = Tree(model['model']['root'], self.fields, objective_field=self.objective_id, root_distribution=distribution, parent_id=None, ids_map=self.ids_map) self.terms = {} else: raise Exception("The model isn't finished yet") else: raise Exception("Cannot create the Model instance. Could not" " find the 'model' key in the resource:\n\n%s" % model) if self.tree.regression: try: import numpy import scipy self.regression_ready = True except ImportError: self.regression_ready = False
def __init__(self, model, api=None): if (isinstance(model, dict) and 'resource' in model and model['resource'] is not None): self.resource_id = model['resource'] else: # If only the model id is provided, the short version of the model # resource is used to build a basic summary of the model if api is None: api = BigML() self.resource_id = get_model_id(model) if self.resource_id is None: raise Exception(error_message(model, resource_type='model', method='get')) query_string = '%s;%s' % (ONLY_MODEL, EXCLUDE_ROOT) model = retrieve_model(api, self.resource_id, query_string=query_string) if ('object' in model and isinstance(model['object'], dict)): model = model['object'] if ('model' in model and isinstance(model['model'], dict)): status = get_status(model) if ('code' in status and status['code'] == FINISHED): if 'model_fields' in model['model']: fields = model['model']['model_fields'] # pagination or exclusion might cause a field not to # be in available fields dict if not all(key in model['model']['fields'] for key in fields.keys()): raise Exception("Some fields are missing" " to generate a local model." " Please, provide a model with" " the complete list of fields.") for field in fields: field_info = model['model']['fields'][field] if 'summary' in field_info: fields[field]['summary'] = field_info['summary'] fields[field]['name'] = field_info['name'] else: fields = model['model']['fields'] objective_field = model['objective_fields'] self.objective_field = extract_objective(objective_field) self.uniquify_varnames(fields) self.inverted_fields = invert_dictionary(fields) self.all_inverted_fields = invert_dictionary(model['model'] ['fields']) self.fields = fields self.description = model['description'] self.field_importance = model['model'].get('importance', None) if self.field_importance: self.field_importance = [element for element in self.field_importance if element[0] in fields] self.locale = model.get('locale', DEFAULT_LOCALE) else: raise Exception("The model isn't finished yet") else: raise Exception("Cannot create the BaseModel instance. Could not" " find the 'model' key in the resource:\n\n%s" % model)
def __init__(self, model, api=None): """The Model constructor can be given as first argument: - a model structure - a model id - a path to a JSON file containing a model structure """ self.resource_id = None self.ids_map = {} self.terms = {} # the string can be a path to a JSON file if isinstance(model, basestring): try: with open(model) as model_file: model = json.load(model_file) self.resource_id = get_model_id(model) if self.resource_id is None: raise ValueError("The JSON file does not seem" " to contain a valid BigML model" " representation.") except IOError: # if it is not a path, it can be a model id self.resource_id = get_model_id(model) if self.resource_id is None: if model.find('model/') > -1: raise Exception( api.error_message(model, resource_type='model', method='get')) else: raise IOError("Failed to open the expected JSON file" " at %s" % model) except ValueError: raise ValueError("Failed to interpret %s." " JSON file expected.") if not (isinstance(model, dict) and 'resource' in model and model['resource'] is not None): if api is None: api = BigML(storage=STORAGE) query_string = ONLY_MODEL model = retrieve_resource(api, self.resource_id, query_string=query_string) else: self.resource_id = get_model_id(model) BaseModel.__init__(self, model, api=api) if 'object' in model and isinstance(model['object'], dict): model = model['object'] if 'model' in model and isinstance(model['model'], dict): status = get_status(model) if 'code' in status and status['code'] == FINISHED: distribution = model['model']['distribution']['training'] self.tree = Tree( model['model']['root'], self.fields, objective_field=self.objective_id, root_distribution=distribution, parent_id=None, ids_map=self.ids_map) else: raise Exception("The model isn't finished yet") else: raise Exception("Cannot create the Model instance. Could not" " find the 'model' key in the resource:\n\n%s" % model) if self.tree.regression: try: import numpy import scipy self.regression_ready = True except ImportError: self.regression_ready = False
def __init__(self, model, api=None): """The Model constructor can be given as first argument: - a model structure - a model id - a path to a JSON file containing a model structure """ self.resource_id = None self.ids_map = {} self.terms = {} # the string can be a path to a JSON file if isinstance(model, basestring): try: with open(model) as model_file: model = json.load(model_file) self.resource_id = get_model_id(model) if self.resource_id is None: raise ValueError( "The JSON file does not seem" " to contain a valid BigML model" " representation." ) except IOError: # if it is not a path, it can be a model id self.resource_id = get_model_id(model) if self.resource_id is None: if model.find("model/") > -1: raise Exception(api.error_message(model, resource_type="model", method="get")) else: raise IOError("Failed to open the expected JSON file" " at %s" % model) except ValueError: raise ValueError("Failed to interpret %s." " JSON file expected.") # checks whether the information needed for local predictions is in # the first argument if isinstance(model, dict) and not check_model_fields(model): # if the fields used by the model are not # available, use only ID to retrieve it again model = get_model_id(model) self.resource_id = model if not (isinstance(model, dict) and "resource" in model and model["resource"] is not None): if api is None: api = BigML(storage=STORAGE) query_string = ONLY_MODEL model = retrieve_resource(api, self.resource_id, query_string=query_string) else: self.resource_id = get_model_id(model) BaseModel.__init__(self, model, api=api) if "object" in model and isinstance(model["object"], dict): model = model["object"] if "model" in model and isinstance(model["model"], dict): status = get_status(model) if "code" in status and status["code"] == FINISHED: distribution = model["model"]["distribution"]["training"] # will store global information in the tree: regression and # max_bins number tree_info = {"max_bins": 0} self.tree = Tree( model["model"]["root"], self.fields, objective_field=self.objective_id, root_distribution=distribution, parent_id=None, ids_map=self.ids_map, tree_info=tree_info, ) self.tree.regression = tree_info["regression"] if self.tree.regression: self._max_bins = tree_info["max_bins"] else: raise Exception("The model isn't finished yet") else: raise Exception( "Cannot create the Model instance. Could not" " find the 'model' key in the resource:\n\n%s" % model ) if self.tree.regression: try: import numpy import scipy self.regression_ready = True except ImportError: self.regression_ready = False
def __init__(self, model, api=None, fields=None): if check_model_structure(model): self.resource_id = model['resource'] else: # If only the model id is provided, the short version of the model # resource is used to build a basic summary of the model if api is None: api = BigML() self.resource_id = get_model_id(model) if self.resource_id is None: raise Exception(api.error_message(model, resource_type='model', method='get')) if fields is not None and isinstance(fields, dict): query_string = EXCLUDE_FIELDS else: query_string = ONLY_MODEL model = retrieve_resource(api, self.resource_id, query_string=query_string) # Stored copies of the model structure might lack some necessary # keys if not check_model_structure(model): model = api.get_model(self.resource_id, query_string=query_string) if 'object' in model and isinstance(model['object'], dict): model = model['object'] if 'model' in model and isinstance(model['model'], dict): status = get_status(model) if 'code' in status and status['code'] == FINISHED: if (fields is None and ('model_fields' in model['model'] or 'fields' in model['model'])): fields = model['model'].get('model_fields', model['model'].get('fields', [])) # pagination or exclusion might cause a field not to # be in available fields dict if not all(key in model['model']['fields'] for key in fields.keys()): raise Exception("Some fields are missing" " to generate a local model." " Please, provide a model with" " the complete list of fields.") for field in fields: field_info = model['model']['fields'][field] if 'summary' in field_info: fields[field]['summary'] = field_info['summary'] fields[field]['name'] = field_info['name'] objective_field = model['objective_fields'] ModelFields.__init__( self, fields, objective_id=extract_objective(objective_field)) self.description = model['description'] self.field_importance = model['model'].get('importance', None) if self.field_importance: self.field_importance = [element for element in self.field_importance if element[0] in fields] self.locale = model.get('locale', DEFAULT_LOCALE) else: raise Exception("The model isn't finished yet") else: raise Exception("Cannot create the BaseModel instance. Could not" " find the 'model' key in the resource:\n\n%s" % model)
def __init__(self, model, api=None, fields=None): """The Model constructor can be given as first argument: - a model structure - a model id - a path to a JSON file containing a model structure """ self.resource_id = None self.ids_map = {} self.terms = {} self.regression = False self.boosting = None self.class_names = None if not hasattr(self, 'tree_class'): self.tree_class = Tree # the string can be a path to a JSON file if isinstance(model, basestring): try: with open(model) as model_file: model = json.load(model_file) self.resource_id = get_model_id(model) if self.resource_id is None: raise ValueError("The JSON file does not seem" " to contain a valid BigML model" " representation.") except IOError: # if it is not a path, it can be a model id self.resource_id = get_model_id(model) if self.resource_id is None: if model.find('model/') > -1: raise Exception( api.error_message(model, resource_type='model', method='get')) else: raise IOError("Failed to open the expected JSON file" " at %s" % model) except ValueError: raise ValueError("Failed to interpret %s." " JSON file expected.") # checks whether the information needed for local predictions is in # the first argument if isinstance(model, dict) and \ not fields and \ not check_model_fields(model): # if the fields used by the model are not # available, use only ID to retrieve it again model = get_model_id(model) self.resource_id = model if not (isinstance(model, dict) and 'resource' in model and model['resource'] is not None): if api is None: api = BigML(storage=STORAGE) if fields is not None and isinstance(fields, dict): query_string = EXCLUDE_FIELDS else: query_string = ONLY_MODEL model = retrieve_resource(api, self.resource_id, query_string=query_string) else: self.resource_id = get_model_id(model) BaseModel.__init__(self, model, api=api, fields=fields) if 'object' in model and isinstance(model['object'], dict): model = model['object'] if 'model' in model and isinstance(model['model'], dict): status = get_status(model) if 'code' in status and status['code'] == FINISHED: # boosting models are to be handled using the BoostedTree # class if model.get("boosted_ensemble"): self.boosting = model.get('boosting', False) if self.boosting == {}: self.boosting = False self.regression = \ not self.boosting and \ self.fields[self.objective_id]['optype'] == 'numeric' \ or (self.boosting and \ self.boosting.get("objective_class") is None) if self.boosting: self.tree = BoostedTree( model['model']['root'], self.fields, objective_field=self.objective_id) else: distribution = model['model']['distribution']['training'] # will store global information in the tree: regression and # max_bins number tree_info = {'max_bins': 0} self.tree = self.tree_class( model['model']['root'], self.fields, objective_field=self.objective_id, root_distribution=distribution, parent_id=None, ids_map=self.ids_map, tree_info=tree_info) self.tree.regression = tree_info['regression'] if self.tree.regression: try: import numpy import scipy self._max_bins = tree_info['max_bins'] self.regression_ready = True except ImportError: self.regression_ready = False else: root_dist = self.tree.distribution self.class_names = sorted([category[0] for category in root_dist]) else: raise Exception("The model isn't finished yet") else: raise Exception("Cannot create the Model instance. Could not" " find the 'model' key in the resource:\n\n%s" % model)
def __init__(self, model, api=None, fields=None, checked=True): check_fn = check_local_but_fields if fields is not None else \ check_local_info if isinstance(model, dict) and (checked or check_fn(model)): self.resource_id = model['resource'] else: # If only the model id is provided, the short version of the model # resource is used to build a basic summary of the model self.api = get_api_connection(api) self.resource_id = get_model_id(model) if self.resource_id is None: raise Exception(self.api.error_message(model, resource_type='model', method='get')) if fields is not None and isinstance(fields, dict): query_string = EXCLUDE_FIELDS else: query_string = ONLY_MODEL model = retrieve_resource(api, self.resource_id, query_string=query_string, no_check_fields=fields is not None) if 'object' in model and isinstance(model['object'], dict): model = model['object'] if 'model' in model and isinstance(model['model'], dict): status = get_status(model) if 'code' in status and status['code'] == FINISHED: if (fields is None and ('model_fields' in model['model'] or 'fields' in model['model'])): fields = model['model'].get('model_fields', model['model'].get('fields', [])) # model_fields doesn't contain the datetime fields fields.update(datetime_fields(model['model'].get('fields', {}))) # pagination or exclusion might cause a field not to # be in available fields dict if not all(key in model['model']['fields'] for key in list(fields.keys())): raise Exception("Some fields are missing" " to generate a local model." " Please, provide a model with" " the complete list of fields.") for field in fields: field_info = model['model']['fields'][field] if 'summary' in field_info: fields[field]['summary'] = field_info['summary'] fields[field]['name'] = field_info['name'] objective_field = model['objective_fields'] missing_tokens = model['model'].get('missing_tokens') ModelFields.__init__( self, fields, objective_id=extract_objective(objective_field), missing_tokens=missing_tokens) self.description = model['description'] self.field_importance = model['model'].get('importance', None) if self.field_importance: self.field_importance = [element for element in self.field_importance if element[0] in fields] self.locale = model.get('locale', DEFAULT_LOCALE) else: raise Exception("The model isn't finished yet") else: raise Exception("Cannot create the BaseModel instance. Could not" " find the 'model' key in the resource:\n\n%s" % model)
def __init__(self, model, api=None, fields=None): """The Model constructor can be given as first argument: - a model structure - a model id - a path to a JSON file containing a model structure """ self.resource_id = None self.ids_map = {} self.terms = {} self.regression = False self.boosting = None self.class_names = None if not hasattr(self, 'tree_class'): self.tree_class = Tree # the string can be a path to a JSON file if isinstance(model, basestring): try: with open(model) as model_file: model = json.load(model_file) self.resource_id = get_model_id(model) if self.resource_id is None: raise ValueError("The JSON file does not seem" " to contain a valid BigML model" " representation.") except IOError: # if it is not a path, it can be a model id self.resource_id = get_model_id(model) if self.resource_id is None: if model.find('model/') > -1: raise Exception( api.error_message(model, resource_type='model', method='get')) else: raise IOError("Failed to open the expected JSON file" " at %s" % model) except ValueError: raise ValueError("Failed to interpret %s." " JSON file expected.") # checks whether the information needed for local predictions is in # the first argument if isinstance(model, dict) and \ not fields and \ not check_model_fields(model): # if the fields used by the model are not # available, use only ID to retrieve it again model = get_model_id(model) self.resource_id = model if not (isinstance(model, dict) and 'resource' in model and model['resource'] is not None): if api is None: api = BigML(storage=STORAGE) if fields is not None and isinstance(fields, dict): query_string = EXCLUDE_FIELDS else: query_string = ONLY_MODEL model = retrieve_resource(api, self.resource_id, query_string=query_string) else: self.resource_id = get_model_id(model) BaseModel.__init__(self, model, api=api, fields=fields) if 'object' in model and isinstance(model['object'], dict): model = model['object'] if 'model' in model and isinstance(model['model'], dict): status = get_status(model) if 'code' in status and status['code'] == FINISHED: # boosting models are to be handled using the BoostedTree # class if model.get("boosted_ensemble"): self.boosting = model.get('boosting', False) if self.boosting == {}: self.boosting = False self.regression = \ not self.boosting and \ self.fields[self.objective_id]['optype'] == 'numeric' \ or (self.boosting and \ self.boosting.get("objective_class") is None) if self.boosting: self.tree = BoostedTree(model['model']['root'], self.fields, objective_field=self.objective_id) else: distribution = model['model']['distribution']['training'] # will store global information in the tree: regression and # max_bins number tree_info = {'max_bins': 0} self.tree = self.tree_class( model['model']['root'], self.fields, objective_field=self.objective_id, root_distribution=distribution, parent_id=None, ids_map=self.ids_map, tree_info=tree_info) self.tree.regression = tree_info['regression'] if self.tree.regression: try: import numpy import scipy self._max_bins = tree_info['max_bins'] self.regression_ready = True except ImportError: self.regression_ready = False else: root_dist = self.tree.distribution self.class_names = sorted( [category[0] for category in root_dist]) else: raise Exception("The model isn't finished yet") else: raise Exception("Cannot create the Model instance. Could not" " find the 'model' key in the resource:\n\n%s" % model)
def __init__(self, ensemble, api=None, max_models=None, cache_get=None): self.model_splits = [] self.multi_model = None self.api = get_api_connection(api) self.fields = None self.class_names = None if use_cache(cache_get): # using a cache to store the model attributes self.__dict__ = load(get_ensemble_id(ensemble), cache_get) self.api = get_api_connection(api) if len(self.models_splits) == 1: # retrieve the models from a cache get function try: models = [ Model(model_id, cache_get=cache_get) for model_id in self.models_splits[0] ] except Exception as exc: raise Exception('Error while calling the user-given' ' function %s: %s' % (cache_get.__name__, str(exc))) self.multi_model = MultiModel(models, self.api, fields=self.fields, class_names=self.class_names, cache_get=cache_get) return self.resource_id = None self.objective_id = None self.distributions = None self.distribution = None self.boosting = None self.boosting_offsets = None self.cache_get = None self.regression = False self.importance = {} query_string = ONLY_MODEL no_check_fields = False self.input_fields = [] if isinstance(ensemble, list): if all([isinstance(model, Model) for model in ensemble]): models = ensemble self.model_ids = [ local_model.resource_id for local_model in models ] else: try: models = [get_model_id(model) for model in ensemble] self.model_ids = models except ValueError as exc: raise ValueError('Failed to verify the list of models.' ' Check your model id values: %s' % str(exc)) else: ensemble = self.get_ensemble_resource(ensemble) self.resource_id = get_ensemble_id(ensemble) if not check_local_but_fields(ensemble): # avoid checking fields because of old ensembles ensemble = retrieve_resource(self.api, self.resource_id, no_check_fields=True) if ensemble['object'].get('type') == BOOSTING: self.boosting = ensemble['object'].get('boosting') models = ensemble['object']['models'] self.distributions = ensemble['object'].get('distributions', []) self.importance = ensemble['object'].get('importance', []) self.model_ids = models # new ensembles have the fields structure if ensemble['object'].get('ensemble'): self.fields = ensemble['object'].get( \ 'ensemble', {}).get("fields") self.objective_id = ensemble['object'].get("objective_field") query_string = EXCLUDE_FIELDS no_check_fields = True self.input_fields = ensemble['object'].get('input_fields') number_of_models = len(models) if max_models is None: self.models_splits = [models] else: self.models_splits = [ models[index:(index + max_models)] for index in range(0, number_of_models, max_models) ] if len(self.models_splits) == 1: if not isinstance(models[0], Model): if use_cache(cache_get): # retrieve the models from a cache get function try: models = [ Model(model_id, cache_get=cache_get) for model_id in self.models_splits[0] ] self.cache_get = cache_get except Exception as exc: raise Exception('Error while calling the user-given' ' function %s: %s' % (cache_get.__name__, str(exc))) else: models = [retrieve_resource( \ self.api, model_id, query_string=query_string, no_check_fields=no_check_fields) for model_id in self.models_splits[0]] model = models[0] else: # only retrieving first model self.cache_get = cache_get if not isinstance(models[0], Model): if use_cache(cache_get): # retrieve the models from a cache get function try: model = Model(self.models_splits[0][0], cache_get=cache_get) self.cache_get = cache_get except Exception as exc: raise Exception('Error while calling the user-given' ' function %s: %s' % (cache_get.__name__, str(exc))) else: model = retrieve_resource( \ self.api, self.models_splits[0][0], query_string=query_string, no_check_fields=no_check_fields) models = [model] if self.distributions is None: try: self.distributions = [] for model in models: self.distributions.append( {'training': model.root_distribution}) except AttributeError: self.distributions = [ model['object']['model']['distribution'] for model in models ] if self.boosting is None: self._add_models_attrs(model, max_models) if self.fields is None: self.fields, self.objective_id = self.all_model_fields( max_models=max_models) if self.fields: add_distribution(self) self.regression = \ self.fields[self.objective_id].get('optype') == NUMERIC if self.boosting: self.boosting_offsets = ensemble['object'].get('initial_offset', 0) \ if self.regression else dict(ensemble['object'].get( \ 'initial_offsets', [])) if not self.regression: try: objective_field = self.fields[self.objective_id] categories = objective_field['summary']['categories'] classes = [category[0] for category in categories] except (AttributeError, KeyError): classes = set() for distribution in self.distributions: for category in distribution['training']['categories']: classes.add(category[0]) self.class_names = sorted(classes) self.objective_categories = [category for \ category, _ in self.fields[self.objective_id][ \ "summary"]["categories"]] ModelFields.__init__( \ self, self.fields, objective_id=self.objective_id) if len(self.models_splits) == 1: self.multi_model = MultiModel(models, self.api, fields=self.fields, class_names=self.class_names)
def __init__(self, model, api=None, fields=None, cache_get=None): """The Model constructor can be given as first argument: - a model structure - a model id - a path to a JSON file containing a model structure """ if use_cache(cache_get): # using a cache to store the model attributes self.__dict__ = load(get_model_id(model), cache_get) return self.resource_id = None self.ids_map = {} self.terms = {} self.regression = False self.boosting = None self.class_names = None api = get_api_connection(api) # retrieving model information from self.resource_id, model = get_resource_dict( \ model, "model", api=api, no_check_fields=fields is not None) if 'object' in model and isinstance(model['object'], dict): model = model['object'] if 'model' in model and isinstance(model['model'], dict): status = get_status(model) if 'code' in status and status['code'] == FINISHED: # fill boosting info before creating modelfields if model.get("boosted_ensemble"): self.boosting = model.get('boosting', False) if self.boosting == {}: self.boosting = False self.input_fields = model["input_fields"] BaseModel.__init__(self, model, api=api, fields=fields) root = model['model']['root'] self.weighted = "weighted_objective_summary" in root if self.boosting: # build boosted tree self.tree = b.build_boosting_tree( \ model['model']['root']) elif self.regression: self.root_distribution = model['model'][ \ 'distribution']['training'] # build regression tree self.tree = r.build_regression_tree(root, \ distribution=self.root_distribution, \ weighted=self.weighted) else: # build classification tree self.root_distribution = model['model'][\ 'distribution']['training'] self.laplacian_term = laplacian_term( \ extract_distribution(self.root_distribution)[1], self.weighted) self.tree = c.build_classification_tree( \ model['model']['root'], \ distribution=self.root_distribution, \ weighted=self.weighted) self.class_names = sorted( \ [category[0] for category in \ self.root_distribution["categories"]]) self.objective_categories = [category for \ category, _ in self.fields[self.objective_id][ \ "summary"]["categories"]] if self.boosting: self.tree_type = BOOSTING self.offsets = b.OFFSETS elif self.regression: self.tree_type = REGRESSION self.offsets = r.OFFSETS[str(self.weighted)] else: self.tree_type = CLASSIFICATION self.offsets = c.OFFSETS[str(self.weighted)] else: raise Exception("Cannot create the Model instance." " Only correctly finished models can be" " used. The model status is currently:" " %s\n" % STATUSES[status['code']]) else: raise Exception("Cannot create the Model instance. Could not" " find the 'model' key in the resource:" "\n\n%s" % model)