def local_prediction(deepnets, test_reader, output, args, exclude=None): """Get local deepnet and issue prediction """ kwargs = {"full": True} if args.operating_point_: kwargs.update({"operating_point": args.operating_point_}) # Only one deepnet at present local_deepnet = Deepnet(deepnets[0], api=args.retrieve_api_) for input_data in test_reader: input_data_dict = test_reader.dict(input_data, filtering=False) prediction_info = local_deepnet.predict(input_data_dict, **kwargs) write_prediction(prediction_info, output, args.prediction_info, input_data, exclude)
def local_prediction(deepnets, test_reader, output, args, exclude=None): """Get local deepnet and issue prediction """ # Only one deepnet at present local_deepnet = Deepnet(deepnets[0], api=args.retrieve_api_) test_set_header = test_reader.has_headers() for input_data in test_reader: input_data_dict = test_reader.dict(input_data, filtering=False) prediction_info = local_deepnet.predict( input_data_dict, by_name=test_set_header) write_prediction(prediction_info, output, args.prediction_info, input_data, exclude)
def local_prediction(deepnets, test_reader, output, args, exclude=None): """Get local deepnet and issue prediction """ kwargs = {"full": True} if args.operating_point_: kwargs.update({"operating_point": args.operating_point_}) # Only one deepnet at present local_deepnet = Deepnet(deepnets[0], api=args.retrieve_api_) for input_data in test_reader: input_data_dict = test_reader.dict(input_data, filtering=False) prediction_info = local_deepnet.predict( input_data_dict, **kwargs) write_prediction(prediction_info, output, args.prediction_info, input_data, exclude)
def createRacingModel(dataset, type=util.ML_BIGML): if type == util.ML_BIGML: api = BigML(config.BIGML_USER, config.BIGML_API_KEY) print("Creating model...") args = {"name": "Racing Model", "objective_field": "Movement"} model = api.create_deepnet(dataset, args) api.ok(model) resource = model["resource"] # Saves model id to a file file = open("saved_models.txt", "a+") file.write(f"\nracing-{resource}") file.close() # Creates LOCAL model model = Deepnet(resource, api) return model
def i_create_local_deepnet_from_file(step, export_file): world.local_deepnet = Deepnet(res_filename(export_file))
def i_create_local_deepnet_from_file(step, export_file): world.local_deepnet = Deepnet(res_filename(export_file), api=BigML("wrong-user", "wrong-api-key"))
import os.path import json import csv import urllib.request from urllib.parse import urlparse from bs4 import BeautifulSoup from bs4 import Comment try: from urllib.parse import urlparse except ImportError: import urlparse BIGML_USERNAME = '******' BIGML_API_KEY = 'd0ad30e1fa62ba453db353e2e6680866c0393cfb' BIGML_STORAGE = 'D://Empty' api = BigML(BIGML_USERNAME, BIGML_API_KEY, storage=BIGML_STORAGE) deepnet = Deepnet('deepnet/5b867d8c8bf7d57a4302f787', api=api) con = MongoClient('localhost', 27017) db = con['Url_data'] collection=db['getJobs'] flag=0 list_=[] rep_val='' store_first_keyword='' def insert_text_in_textBox(): try: if(len(browser.find_elements_by_xpath("//input[@type='text']"))>=1): text_box = browser.find_elements_by_xpath("//input[@type='text']") text_box[0].send_keys("jobs") except: pass def get_all_jobs(url,original_url,valid_urls):
def i_create_a_local_deepnet(step): world.local_model = Deepnet(world.deepnet['resource']) if hasattr(world, "local_ensemble"): world.local_ensemble = None
# Requires BigML Python bindings # # Install via: pip install bigml # # or clone it: # git clone https://github.com/bigmlcom/python.git from bigml.deepnet import Deepnet from bigml.api import BigML # Downloads and generates a local version of the DEEPNET, # if it hasn't been downloaded previously. deepnet = Deepnet('deepnet/5c59efee00a1e50a6c0039ba', api=BigML("rshelton", "adabd734dd2a2af5cb4e49176f0eb472cfa8ce5a", domain="bigml.io")) # To make predictions fill the desired input_data in next line. input_data = { "EMERG_VEH": "yes", "Division": "d42", "DISABILITY": "yes", "ACCLASS": "Non-Fatal Injury", "RDSFCOND": "Dry", "INVTYPE": "Driver", "IMPACTYPE": "Turning Movement", "ACCLOC": "At Intersection", "LIGHT": "Daylight", "VISIBILITY": "Clear", "Ward_Name": "scarborough", "INJURY": "None", "INVAGE": "unknown", "ALCOHOL": "yes", "REDLIGHT": "yes",
def modelFromID(resource, type=util.ML_BIGML): # Creates a local model based on a model id if type == util.ML_BIGML: api = BigML(config.BIGML_USER, config.BIGML_API_KEY) model = Deepnet(resource, api) return model
from flask import Flask, jsonify, request from flask_cors import CORS from predictor import Predictor import numpy as np from bigml.deepnet import Deepnet from bigml.api import BigML # Downloads and generates a local version of the DEEPNET, # if it hasn't been downloaded previously. deepnet = Deepnet('deepnet/5dba7bb15a21395ce200035a', api=BigML("medias", "1bbcaec3bdce36230a99d91fbf5597d0c5ea4fc4", domain="bigml.io")) pp = Predictor() pp.load_pickle() app = Flask(__name__) CORS(app) @app.route("/",methods=["GET","POST"]) def give(): return jsonify({"status":"OK","message":"Hello"}) @app.route("/api/predict",methods=['POST']) def predict(): #Get Request Data content = request.json age = content['Age'] #numeric km = content['KM'] #numerci fueltype = content['FuelType'] #string if fueltype=='CNG': fueltype = 0 elif fueltype=='Diesel': fueltype = 1