예제 #1
0
def get_resource_dict(resource, resource_type, api=None):
    """Extracting the resource JSON info as a dict from the first argument of
       the local object constructors, that can be:

        - the path to a file that contains the JSON
        - the ID of the resource
        - the resource dict itself

    """
    if api is None:
        api = BigML(storage=STORAGE)
    get_id = ID_GETTERS[resource_type]
    resource_id = None
    # the string can be a path to a JSON file
    if isinstance(resource, basestring):
        try:
            with open(resource) as resource_file:
                resource = json.load(resource_file)
                resource_id = get_id(resource)
                if resource_id is None:
                    raise ValueError("The JSON file does not seem"
                                     " to contain a valid BigML %s"
                                     " representation." % resource_type)
        except IOError:
            # if it is not a path, it can be a model id
            resource_id = get_id(resource)
            if resource_id is None:
                if resource.find("%s/" % resource_type) > -1:
                    raise Exception(
                        api.error_message(resource,
                                          resource_type=resource_type,
                                          method="get"))
                else:
                    raise IOError("Failed to open the expected JSON file"
                                  " at %s." % resource)
        except ValueError:
            raise ValueError("Failed to interpret %s."
                             " JSON file expected." % resource)

    # checks whether the information needed for local predictions is in
    # the first argument
    if isinstance(resource, dict) and \
            not check_model_fields(resource):
        # if the fields used by the model are not
        # available, use only ID to retrieve it again
        resource = get_id(resource)
        resource_id = resource

    if not (isinstance(resource, dict) and 'resource' in resource and
            resource['resource'] is not None):
        query_string = ONLY_MODEL
        resource = retrieve_resource(api, resource_id,
                                     query_string=query_string)
    else:
        resource_id = get_id(resource)

    return resource_id, resource
예제 #2
0
def check_local_info(model):
    """Whether the information in `model` is enough to use it locally

    """
    try:
        return check_local_but_fields(model) and \
            check_model_fields(model)
    except Exception:
        return False
예제 #3
0
def retrieve_resource(api, resource_id, query_string=ONLY_MODEL,
                      no_check_fields=False):
    """ Retrieves resource info either from a local repo or
        from the remote server

    """
    if api.storage is not None:
        try:
            stored_resource = "%s%s%s" % (api.storage, os.sep,
                                          resource_id.replace("/", "_"))
            with open(stored_resource) as resource_file:
                resource = json.loads(resource_file.read())
            # we check that the stored resource has enough fields information
            # for local predictions to work. Otherwise we should retrieve it.
            if no_check_fields or check_model_fields(resource):
                return resource
        except ValueError:
            raise ValueError("The file %s contains no JSON")
        except IOError:
            pass
    api_getter = api.getters[get_resource_type(resource_id)]
    resource = check_resource(resource_id, api_getter, query_string)
    return resource
예제 #4
0
파일: timeseries.py 프로젝트: mmerce/python
    def __init__(self, time_series, api=None):

        self.resource_id = None
        self.input_fields = []
        self.objective_fields = []
        self.all_numeric_objectives = False
        self.period = 1
        self.ets_models = {}
        self.error = None
        self.damped_trend = None
        self.seasonality = None
        self.trend = None
        self.time_range = {}
        self.field_parameters = {}
        self._forecast = []

        # checks whether the information needed for local predictions is in
        # the first argument
        if isinstance(time_series, dict) and \
                not check_model_fields(time_series):
            # if the fields used by the logistic regression are not
            # available, use only ID to retrieve it again
            time_series = get_time_series_id( \
                time_series)
            self.resource_id = time_series

        if not (isinstance(time_series, dict)
                and 'resource' in time_series and
                time_series['resource'] is not None):
            if api is None:
                api = BigML(storage=STORAGE)
            self.resource_id = get_time_series_id(time_series)
            if self.resource_id is None:
                raise Exception(
                    api.error_message(time_series,
                                      resource_type='time_series',
                                      method='get'))
            query_string = ONLY_MODEL
            time_series = retrieve_resource(
                api, self.resource_id, query_string=query_string)
        else:
            self.resource_id = get_time_series_id(time_series)

        if 'object' in time_series and \
            isinstance(time_series['object'], dict):
            time_series = time_series['object']
        try:
            self.input_fields = time_series.get("input_fields", [])
            self._forecast = time_series.get("forecast")
            self.objective_fields = time_series.get(
                "objective_fields", [])
            objective_field = time_series['objective_field'] if \
                time_series.get('objective_field') else \
                time_series['objective_fields']
        except KeyError:
            raise ValueError("Failed to find the time series expected "
                             "JSON structure. Check your arguments.")
        if 'time_series' in time_series and \
            isinstance(time_series['time_series'], dict):
            status = get_status(time_series)
            if 'code' in status and status['code'] == FINISHED:
                time_series_info = time_series['time_series']
                fields = time_series_info.get('fields', {})
                self.fields = fields
                if not self.input_fields:
                    self.input_fields = [ \
                        field_id for field_id, _ in
                        sorted(self.fields.items(),
                               key=lambda x: x[1].get("column_number"))]
                self.all_numeric_objectives = time_series_info.get( \
                    'all_numeric_objectives')
                self.period = time_series_info.get('period', 1)
                self.ets_models = time_series_info.get('ets_models', {})
                self.error = time_series_info.get('error')
                self.damped_trend = time_series_info.get('damped_trend')
                self.seasonality = time_series_info.get('seasonality')
                self.trend = time_series_info.get('trend')
                self.time_range = time_series_info.get('time_range')
                self.field_parameters = time_series_info.get( \
                    'field_parameters', {})

                objective_id = extract_objective(objective_field)
                ModelFields.__init__(
                    self, fields,
                    objective_id=objective_id)
            else:
                raise Exception("The time series isn't finished yet")
        else:
            raise Exception("Cannot create the TimeSeries instance."
                            " Could not find the 'time_series' key"
                            " in the resource:\n\n%s" %
                            time_series)
예제 #5
0
    def __init__(self, logistic_regression, api=None):

        self.resource_id = None
        self.input_fields = []
        self.term_forms = {}
        self.tag_clouds = {}
        self.term_analysis = {}
        self.items = {}
        self.item_analysis = {}
        self.categories = {}
        self.coefficients = {}
        self.data_field_types = {}
        self.field_codings = {}
        self.numeric_fields = {}
        self.bias = None
        self.missing_numerics = None
        self.c = None
        self.eps = None
        self.lr_normalize = None
        self.balance_fields = None
        self.regularization = None

        old_coefficients = False

        # checks whether the information needed for local predictions is in
        # the first argument
        if isinstance(logistic_regression, dict) and \
                not check_model_fields(logistic_regression):
            # if the fields used by the logistic regression are not
            # available, use only ID to retrieve it again
            logistic_regression = get_logistic_regression_id( \
                logistic_regression)
            self.resource_id = logistic_regression

        if not (isinstance(logistic_regression, dict)
                and 'resource' in logistic_regression and
                logistic_regression['resource'] is not None):
            if api is None:
                api = BigML(storage=STORAGE)
            self.resource_id = get_logistic_regression_id(logistic_regression)
            if self.resource_id is None:
                raise Exception(
                    api.error_message(logistic_regression,
                                      resource_type='logistic_regression',
                                      method='get'))
            query_string = ONLY_MODEL
            logistic_regression = retrieve_resource(
                api, self.resource_id, query_string=query_string)
        else:
            self.resource_id = get_logistic_regression_id(logistic_regression)

        if 'object' in logistic_regression and \
            isinstance(logistic_regression['object'], dict):
            logistic_regression = logistic_regression['object']
        try:
            self.input_fields = logistic_regression.get("input_fields", [])
            self.dataset_field_types = logistic_regression.get(
                "dataset_field_types", {})
            objective_field = logistic_regression['objective_fields'] if \
                logistic_regression['objective_fields'] else \
                logistic_regression['objective_field']
        except KeyError:
            raise ValueError("Failed to find the logistic regression expected "
                             "JSON structure. Check your arguments.")
        if 'logistic_regression' in logistic_regression and \
            isinstance(logistic_regression['logistic_regression'], dict):
            status = get_status(logistic_regression)
            if 'code' in status and status['code'] == FINISHED:
                logistic_regression_info = logistic_regression[ \
                    'logistic_regression']
                fields = logistic_regression_info.get('fields', {})

                if not self.input_fields:
                    self.input_fields = [ \
                        field_id for field_id, _ in
                        sorted(self.fields.items(),
                               key=lambda x: x[1].get("column_number"))]
                self.coefficients.update(logistic_regression_info.get( \
                    'coefficients', []))
                if not isinstance(self.coefficients.values()[0][0], list):
                    old_coefficients = True
                self.bias = logistic_regression_info.get('bias', True)
                self.c = logistic_regression_info.get('c')
                self.eps = logistic_regression_info.get('eps')
                self.lr_normalize = logistic_regression_info.get('normalize')
                self.balance_fields = logistic_regression_info.get( \
                    'balance_fields')
                self.regularization = logistic_regression_info.get( \
                    'regularization')
                self.field_codings = logistic_regression_info.get( \
                     'field_codings', {})
                # old models have no such attribute, so we set it to False in
                # this case
                self.missing_numerics = logistic_regression_info.get( \
                    'missing_numerics', False)
                objective_id = extract_objective(objective_field)
                for field_id, field in fields.items():
                    if field['optype'] == 'text':
                        self.term_forms[field_id] = {}
                        self.term_forms[field_id].update(
                            field['summary']['term_forms'])
                        self.tag_clouds[field_id] = []
                        self.tag_clouds[field_id] = [tag for [tag, _] in field[
                            'summary']['tag_cloud']]
                        self.term_analysis[field_id] = {}
                        self.term_analysis[field_id].update(
                            field['term_analysis'])
                    if field['optype'] == 'items':
                        self.items[field_id] = []
                        self.items[field_id] = [item for item, _ in \
                            field['summary']['items']]
                        self.item_analysis[field_id] = {}
                        self.item_analysis[field_id].update(
                            field['item_analysis'])
                    if field['optype'] == 'categorical':
                        self.categories[field_id] = [category for \
                            [category, _] in field['summary']['categories']]
                    if self.missing_numerics and field['optype'] == 'numeric':
                        self.numeric_fields[field_id] = True
                ModelFields.__init__(
                    self, fields,
                    objective_id=objective_id)
                self.field_codings = logistic_regression_info.get( \
                  'field_codings', {})
                self.format_field_codings()
                for field_id in self.field_codings:
                    if field_id not in fields and \
                            field_id in self.inverted_fields:
                        self.field_codings.update( \
                            {self.inverted_fields[field_id]: \
                             self.field_codings[field_id]})
                        del self.field_codings[field_id]
                if old_coefficients:
                    self.map_coefficients()
            else:
                raise Exception("The logistic regression isn't finished yet")
        else:
            raise Exception("Cannot create the LogisticRegression instance."
                            " Could not find the 'logistic_regression' key"
                            " in the resource:\n\n%s" %
                            logistic_regression)
예제 #6
0
    def __init__(self, anomaly, api=None):

        self.resource_id = None
        self.sample_size = None
        self.input_fields = None
        self.mean_depth = None
        self.expected_mean_depth = None
        self.iforest = None
        self.top_anomalies = None
        self.id_fields = []


        # checks whether the information needed for local predictions is in
        # the first argument
        if isinstance(anomaly, dict) and \
                not check_model_fields(anomaly):
            # if the fields used by the anomaly detector are not
            # available, use only ID to retrieve it again
            anomaly = get_anomaly_id(anomaly)
            self.resource_id = anomaly

        if not (isinstance(anomaly, dict) and 'resource' in anomaly and
                anomaly['resource'] is not None):
            if api is None:
                api = BigML(storage=STORAGE)
            self.resource_id = get_anomaly_id(anomaly)
            if self.resource_id is None:
                raise Exception(api.error_message(anomaly,
                                                  resource_type='anomaly',
                                                  method='get'))
            query_string = ONLY_MODEL
            anomaly = retrieve_resource(api, self.resource_id,
                                        query_string=query_string)
        else:
            self.resource_id = get_anomaly_id(anomaly)
        if 'object' in anomaly and isinstance(anomaly['object'], dict):
            anomaly = anomaly['object']
            self.sample_size = anomaly.get('sample_size')
            self.input_fields = anomaly.get('input_fields')
            self.id_fields = anomaly.get('id_fields', [])
        if 'model' in anomaly and isinstance(anomaly['model'], dict):
            ModelFields.__init__(self, anomaly['model'].get('fields'))
            if ('top_anomalies' in anomaly['model'] and
                    isinstance(anomaly['model']['top_anomalies'], list)):
                self.mean_depth = anomaly['model'].get('mean_depth')
                status = get_status(anomaly)
                if 'code' in status and status['code'] == FINISHED:
                    self.expected_mean_depth = None
                    if self.mean_depth is None or self.sample_size is None:
                        raise Exception("The anomaly data is not complete. "
                                        "Score will"
                                        " not be available")
                    else:
                        default_depth = (
                            2 * (DEPTH_FACTOR + \
                            math.log(self.sample_size - 1) - \
                            (float(self.sample_size - 1) / self.sample_size)))
                        self.expected_mean_depth = min(self.mean_depth,
                                                       default_depth)
                    iforest = anomaly['model'].get('trees', [])
                    if iforest:
                        self.iforest = [
                            AnomalyTree(anomaly_tree['root'], self.fields)
                            for anomaly_tree in iforest]
                    self.top_anomalies = anomaly['model']['top_anomalies']
                else:
                    raise Exception("The anomaly isn't finished yet")
            else:
                raise Exception("Cannot create the Anomaly instance. Could not"
                                " find the 'top_anomalies' key in the"
                                " resource:\n\n%s" % anomaly['model'].keys())
예제 #7
0
    def __init__(self, cluster, api=None):

        self.resource_id = None
        self.centroids = None
        self.cluster_global = None
        self.total_ss = None
        self.within_ss = None
        self.between_ss = None
        self.ratio_ss = None
        self.critical_value = None
        self.default_numeric_value = None
        self.k = None
        self.summary_fields = []
        self.scales = {}
        self.term_forms = {}
        self.tag_clouds = {}
        self.term_analysis = {}
        self.item_analysis = {}
        self.items = {}
        self.datasets = {}
        self.api = api

        # checks whether the information needed for local predictions is in
        # the first argument
        if isinstance(cluster, dict) and \
                not check_model_fields(cluster):
            # if the fields used by the cluster are not
            # available, use only ID to retrieve it again
            cluster = get_cluster_id(cluster)
            self.resource_id = cluster

        if not (isinstance(cluster, dict) and 'resource' in cluster
                and cluster['resource'] is not None):
            if api is None:
                api = BigML(storage=STORAGE)
                self.api = api
            self.resource_id = get_cluster_id(cluster)
            if self.resource_id is None:
                raise Exception(
                    api.error_message(cluster,
                                      resource_type='cluster',
                                      method='get'))
            query_string = ONLY_MODEL
            cluster = retrieve_resource(api,
                                        self.resource_id,
                                        query_string=query_string)
        else:
            self.resource_id = get_cluster_id(cluster)
        if 'object' in cluster and isinstance(cluster['object'], dict):
            cluster = cluster['object']

        if 'clusters' in cluster and isinstance(cluster['clusters'], dict):
            status = get_status(cluster)
            if 'code' in status and status['code'] == FINISHED:
                self.default_numeric_value = cluster.get( \
                    "default_numeric_value")
                self.summary_fields = cluster.get("summary_fields", [])
                self.datasets = cluster.get("cluster_datasets", {})
                the_clusters = cluster['clusters']
                cluster_global = the_clusters.get('global')
                clusters = the_clusters['clusters']
                self.centroids = [Centroid(centroid) for centroid in clusters]
                self.cluster_global = cluster_global
                if cluster_global:
                    self.cluster_global = Centroid(cluster_global)
                    # "global" has no "name" and "count" then we set them
                    self.cluster_global.name = GLOBAL_CLUSTER_LABEL
                    self.cluster_global.count = \
                        self.cluster_global.distance['population']
                self.total_ss = the_clusters.get('total_ss')
                self.within_ss = the_clusters.get('within_ss')
                if not self.within_ss:
                    self.within_ss = sum(centroid.distance['sum_squares']
                                         for centroid in self.centroids)
                self.between_ss = the_clusters.get('between_ss')
                self.ratio_ss = the_clusters.get('ratio_ss')
                self.critical_value = cluster.get('critical_value', None)
                self.k = cluster.get('k')
                self.scales.update(cluster['scales'])
                self.term_forms = {}
                self.tag_clouds = {}
                self.term_analysis = {}
                fields = cluster['clusters']['fields']
                summary_fields = cluster['summary_fields']
                for field_id in summary_fields:
                    try:
                        del fields[field_id]
                    except KeyError:
                        # clusters retrieved from API will only contain
                        # model fields
                        pass
                for field_id, field in fields.items():
                    if field['optype'] == 'text':
                        self.term_forms[field_id] = {}
                        self.term_forms[field_id].update(
                            field['summary']['term_forms'])
                        self.tag_clouds[field_id] = {}
                        self.tag_clouds[field_id].update(
                            field['summary']['tag_cloud'])
                        self.term_analysis[field_id] = {}
                        self.term_analysis[field_id].update(
                            field['term_analysis'])
                    if field['optype'] == 'items':
                        self.items[field_id] = {}
                        self.items[field_id].update(
                            dict(field['summary']['items']))
                        self.item_analysis[field_id] = {}
                        self.item_analysis[field_id].update(
                            field['item_analysis'])

                ModelFields.__init__(self, fields)
                if not all(
                    [field_id in self.fields for field_id in self.scales]):
                    raise Exception("Some fields are missing"
                                    " to generate a local cluster."
                                    " Please, provide a cluster with"
                                    " the complete list of fields.")
            else:
                raise Exception("The cluster isn't finished yet")
        else:
            raise Exception("Cannot create the Cluster instance. Could not"
                            " find the 'clusters' key in the resource:\n\n%s" %
                            cluster)
예제 #8
0
    def __init__(self, cluster, api=None):

        self.resource_id = None
        self.centroids = None
        self.cluster_global = None
        self.total_ss = None
        self.within_ss = None
        self.between_ss = None
        self.ratio_ss = None
        self.critical_value = None
        self.default_numeric_value = None
        self.k = None
        self.summary_fields = []
        self.scales = {}
        self.term_forms = {}
        self.tag_clouds = {}
        self.term_analysis = {}
        self.item_analysis = {}
        self.items = {}
        self.datasets = {}
        self.api = api

        # checks whether the information needed for local predictions is in
        # the first argument
        if isinstance(cluster, dict) and \
                not check_model_fields(cluster):
            # if the fields used by the cluster are not
            # available, use only ID to retrieve it again
            cluster = get_cluster_id(cluster)
            self.resource_id = cluster

        if not (isinstance(cluster, dict) and 'resource' in cluster and
                cluster['resource'] is not None):
            if api is None:
                api = BigML(storage=STORAGE)
                self.api = api
            self.resource_id = get_cluster_id(cluster)
            if self.resource_id is None:
                raise Exception(api.error_message(cluster,
                                                  resource_type='cluster',
                                                  method='get'))
            query_string = ONLY_MODEL
            cluster = retrieve_resource(api, self.resource_id,
                                        query_string=query_string)
        else:
            self.resource_id = get_cluster_id(cluster)
        if 'object' in cluster and isinstance(cluster['object'], dict):
            cluster = cluster['object']

        if 'clusters' in cluster and isinstance(cluster['clusters'], dict):
            status = get_status(cluster)
            if 'code' in status and status['code'] == FINISHED:
                self.default_numeric_value = cluster.get( \
                    "default_numeric_value")
                self.summary_fields = cluster.get("summary_fields", [])
                self.datasets = cluster.get("cluster_datasets", {})
                the_clusters = cluster['clusters']
                cluster_global = the_clusters.get('global')
                clusters = the_clusters['clusters']
                self.centroids = [Centroid(centroid) for centroid in clusters]
                self.cluster_global = cluster_global
                if cluster_global:
                    self.cluster_global = Centroid(cluster_global)
                    # "global" has no "name" and "count" then we set them
                    self.cluster_global.name = GLOBAL_CLUSTER_LABEL
                    self.cluster_global.count = \
                        self.cluster_global.distance['population']
                self.total_ss = the_clusters.get('total_ss')
                self.within_ss = the_clusters.get('within_ss')
                if not self.within_ss:
                    self.within_ss = sum(centroid.distance['sum_squares'] for
                                         centroid in self.centroids)
                self.between_ss = the_clusters.get('between_ss')
                self.ratio_ss = the_clusters.get('ratio_ss')
                self.critical_value = cluster.get('critical_value', None)
                self.k = cluster.get('k')
                self.scales.update(cluster['scales'])
                self.term_forms = {}
                self.tag_clouds = {}
                self.term_analysis = {}
                fields = cluster['clusters']['fields']
                summary_fields = cluster['summary_fields']
                for field_id in summary_fields:
                    del fields[field_id]
                for field_id, field in fields.items():
                    if field['optype'] == 'text':
                        self.term_forms[field_id] = {}
                        self.term_forms[field_id].update(field[
                            'summary']['term_forms'])
                        self.tag_clouds[field_id] = {}
                        self.tag_clouds[field_id].update(field[
                            'summary']['tag_cloud'])
                        self.term_analysis[field_id] = {}
                        self.term_analysis[field_id].update(
                            field['term_analysis'])
                    if field['optype'] == 'items':
                        self.items[field_id] = {}
                        self.items[field_id].update(
                            dict(field['summary']['items']))
                        self.item_analysis[field_id] = {}
                        self.item_analysis[field_id].update(
                            field['item_analysis'])

                ModelFields.__init__(self, fields)
                if not all([field_id in self.fields for
                            field_id in self.scales]):
                    raise Exception("Some fields are missing"
                                    " to generate a local cluster."
                                    " Please, provide a cluster with"
                                    " the complete list of fields.")
            else:
                raise Exception("The cluster isn't finished yet")
        else:
            raise Exception("Cannot create the Cluster instance. Could not"
                            " find the 'clusters' key in the resource:\n\n%s" %
                            cluster)
예제 #9
0
    def __init__(self, model, api=None, fields=None):
        """The Model constructor can be given as first argument:
            - a model structure
            - a model id
            - a path to a JSON file containing a model structure

        """
        self.resource_id = None
        self.ids_map = {}
        self.terms = {}
        self.regression = False
        self.boosting = None
        self.class_names = None
        if not hasattr(self, 'tree_class'):
            self.tree_class = Tree
        # the string can be a path to a JSON file
        if isinstance(model, basestring):
            try:
                with open(model) as model_file:
                    model = json.load(model_file)
                    self.resource_id = get_model_id(model)
                    if self.resource_id is None:
                        raise ValueError("The JSON file does not seem"
                                         " to contain a valid BigML model"
                                         " representation.")
            except IOError:
                # if it is not a path, it can be a model id
                self.resource_id = get_model_id(model)
                if self.resource_id is None:
                    if model.find('model/') > -1:
                        raise Exception(
                            api.error_message(model,
                                              resource_type='model',
                                              method='get'))
                    else:
                        raise IOError("Failed to open the expected JSON file"
                                      " at %s" % model)
            except ValueError:
                raise ValueError("Failed to interpret %s."
                                 " JSON file expected.")

        # checks whether the information needed for local predictions is in
        # the first argument
        if isinstance(model, dict) and \
                not fields and \
                not check_model_fields(model):
            # if the fields used by the model are not
            # available, use only ID to retrieve it again
            model = get_model_id(model)
            self.resource_id = model

        if not (isinstance(model, dict) and 'resource' in model and
                model['resource'] is not None):
            if api is None:
                api = BigML(storage=STORAGE)
            if fields is not None and isinstance(fields, dict):
                query_string = EXCLUDE_FIELDS
            else:
                query_string = ONLY_MODEL
            model = retrieve_resource(api, self.resource_id,
                                      query_string=query_string)
        else:
            self.resource_id = get_model_id(model)
        BaseModel.__init__(self, model, api=api, fields=fields)
        if 'object' in model and isinstance(model['object'], dict):
            model = model['object']

        if 'model' in model and isinstance(model['model'], dict):
            status = get_status(model)
            if 'code' in status and status['code'] == FINISHED:

                # boosting models are to be handled using the BoostedTree
                # class
                if model.get("boosted_ensemble"):
                    self.boosting = model.get('boosting', False)
                if self.boosting == {}:
                    self.boosting = False

                self.regression = \
                    not self.boosting and \
                    self.fields[self.objective_id]['optype'] == 'numeric' \
                    or (self.boosting and \
                    self.boosting.get("objective_class") is None)

                if self.boosting:
                    self.tree = BoostedTree(
                        model['model']['root'],
                        self.fields,
                        objective_field=self.objective_id)
                else:
                    distribution = model['model']['distribution']['training']
                    # will store global information in the tree: regression and
                    # max_bins number
                    tree_info = {'max_bins': 0}
                    self.tree = self.tree_class(
                        model['model']['root'],
                        self.fields,
                        objective_field=self.objective_id,
                        root_distribution=distribution,
                        parent_id=None,
                        ids_map=self.ids_map,
                        tree_info=tree_info)

                    self.tree.regression = tree_info['regression']

                    if self.tree.regression:
                        try:
                            import numpy
                            import scipy
                            self._max_bins = tree_info['max_bins']
                            self.regression_ready = True
                        except ImportError:
                            self.regression_ready = False
                    else:
                        root_dist = self.tree.distribution
                        self.class_names = sorted([category[0]
                                                   for category in root_dist])
            else:
                raise Exception("The model isn't finished yet")
        else:
            raise Exception("Cannot create the Model instance. Could not"
                            " find the 'model' key in the resource:\n\n%s" %
                            model)
예제 #10
0
파일: model.py 프로젝트: javinp/python
    def __init__(self, model, api=None):
        """The Model constructor can be given as first argument:
            - a model structure
            - a model id
            - a path to a JSON file containing a model structure

        """
        self.resource_id = None
        self.ids_map = {}
        self.terms = {}
        # the string can be a path to a JSON file
        if isinstance(model, basestring):
            try:
                with open(model) as model_file:
                    model = json.load(model_file)
                    self.resource_id = get_model_id(model)
                    if self.resource_id is None:
                        raise ValueError(
                            "The JSON file does not seem" " to contain a valid BigML model" " representation."
                        )
            except IOError:
                # if it is not a path, it can be a model id
                self.resource_id = get_model_id(model)
                if self.resource_id is None:
                    if model.find("model/") > -1:
                        raise Exception(api.error_message(model, resource_type="model", method="get"))
                    else:
                        raise IOError("Failed to open the expected JSON file" " at %s" % model)
            except ValueError:
                raise ValueError("Failed to interpret %s." " JSON file expected.")

        # checks whether the information needed for local predictions is in
        # the first argument
        if isinstance(model, dict) and not check_model_fields(model):
            # if the fields used by the model are not
            # available, use only ID to retrieve it again
            model = get_model_id(model)
            self.resource_id = model

        if not (isinstance(model, dict) and "resource" in model and model["resource"] is not None):
            if api is None:
                api = BigML(storage=STORAGE)
            query_string = ONLY_MODEL
            model = retrieve_resource(api, self.resource_id, query_string=query_string)
        else:
            self.resource_id = get_model_id(model)
        BaseModel.__init__(self, model, api=api)
        if "object" in model and isinstance(model["object"], dict):
            model = model["object"]

        if "model" in model and isinstance(model["model"], dict):
            status = get_status(model)
            if "code" in status and status["code"] == FINISHED:
                distribution = model["model"]["distribution"]["training"]
                # will store global information in the tree: regression and
                # max_bins number
                tree_info = {"max_bins": 0}
                self.tree = Tree(
                    model["model"]["root"],
                    self.fields,
                    objective_field=self.objective_id,
                    root_distribution=distribution,
                    parent_id=None,
                    ids_map=self.ids_map,
                    tree_info=tree_info,
                )
                self.tree.regression = tree_info["regression"]
                if self.tree.regression:
                    self._max_bins = tree_info["max_bins"]
            else:
                raise Exception("The model isn't finished yet")
        else:
            raise Exception(
                "Cannot create the Model instance. Could not" " find the 'model' key in the resource:\n\n%s" % model
            )
        if self.tree.regression:
            try:
                import numpy
                import scipy

                self.regression_ready = True
            except ImportError:
                self.regression_ready = False
예제 #11
0
파일: model.py 프로젝트: jfpaschke/python-3
    def __init__(self, model, api=None):
        """The Model constructor can be given as first argument:
            - a model structure
            - a model id
            - a path to a JSON file containing a model structure

        """
        self.resource_id = None
        self.ids_map = {}
        self.terms = {}
        # the string can be a path to a JSON file
        if isinstance(model, basestring):
            try:
                with open(model) as model_file:
                    model = json.load(model_file)
                    self.resource_id = get_model_id(model)
                    if self.resource_id is None:
                        raise ValueError("The JSON file does not seem"
                                         " to contain a valid BigML model"
                                         " representation.")
            except IOError:
                # if it is not a path, it can be a model id
                self.resource_id = get_model_id(model)
                if self.resource_id is None:
                    if model.find('model/') > -1:
                        raise Exception(
                            api.error_message(model,
                                              resource_type='model',
                                              method='get'))
                    else:
                        raise IOError("Failed to open the expected JSON file"
                                      " at %s" % model)
            except ValueError:
                raise ValueError("Failed to interpret %s."
                                 " JSON file expected.")

        # checks whether the information needed for local predictions is in
        # the first argument
        if isinstance(model, dict) and \
                not check_model_fields(model):
            # if the fields used by the model are not
            # available, use only ID to retrieve it again
            model = get_model_id(model)
            self.resource_id = model

        if not (isinstance(model, dict) and 'resource' in model and
                model['resource'] is not None):
            if api is None:
                api = BigML(storage=STORAGE)
            query_string = ONLY_MODEL
            model = retrieve_resource(api, self.resource_id,
                                      query_string=query_string)
        else:
            self.resource_id = get_model_id(model)
        BaseModel.__init__(self, model, api=api)
        if 'object' in model and isinstance(model['object'], dict):
            model = model['object']

        if 'model' in model and isinstance(model['model'], dict):
            status = get_status(model)
            if 'code' in status and status['code'] == FINISHED:
                distribution = model['model']['distribution']['training']
                # will store global information in the tree: regression and
                # max_bins number
                tree_info = {'max_bins': 0}
                self.tree = Tree(
                    model['model']['root'],
                    self.fields,
                    objective_field=self.objective_id,
                    root_distribution=distribution,
                    parent_id=None,
                    ids_map=self.ids_map,
                    tree_info=tree_info)
                self.tree.regression = tree_info['regression']
                if self.tree.regression:
                    self._max_bins = tree_info['max_bins']
            else:
                raise Exception("The model isn't finished yet")
        else:
            raise Exception("Cannot create the Model instance. Could not"
                            " find the 'model' key in the resource:\n\n%s" %
                            model)
        if self.tree.regression:
            try:
                import numpy
                import scipy
                self.regression_ready = True
            except ImportError:
                self.regression_ready = False