print('Hierarchy version took %f seconds' % hierarchy_time) def size(): """ lst = [] for i in range(100): for j in range(i): lst.append(i) """ lst = list(range(100000)) return dc.means(dc.cluster_sizes(lst)) if __name__ == '__main__': #benchmark() L, com_lipids, com_chol = trajIO.decompress("comTraj.npz") import pickle pickle_off = open("clusters.dict","rb") clusters = pickle.load(pickle_off) X = clusters[0][28]['lipid'][0][0] assert dc.mean_cluster_size(X,L[0],1.15,dc.dbscan_wrapper) == dc.mean_cluster_size(X,L[0],1.15,dc.hierarchy_wrapper) #print(dc.mean_cluster_size(X,L[0],1.15,dc.dbscan_wrapper)) #print(dc.meanRandom(com_lipids[28],L[0],1.15,319,)) print(dc.normSize(X,L[0],1.15,com_lipids[0])) #print(size())
#print(t) #progress tracker upper, lower = trajIO.layering(com_lipids[t]) original = {} original['upper'] = upper original['lower'] = lower for layer in ['upper', 'lower']: #clustering clusters = percentages.cluster(original[layer], percentage) for size in cluster_sizes: for i in range(size): Nparticles = len(clusters[i]) normSizes[block][time][layer][size][ i], weightedNormSizes[block][time][layer][size][ i] = dc.mean_cluster_size( clusters[i], L[t], cutoff) if time == 1: alpha, beta = dc.meanRandom( original[layer], L[t], cutoff, Nparticles) logNorm[size][i] += alpha logWeighted[size][i] += beta #linear #linearNorm = linearWeighted = for block in range(Nblock): start = block * nlog linear_t = displacement.linear_gen(start, Nconf) com_lipids = displacement.linear_displacement(L, com_lipids, start,
for time in times: t = start + time #print(t) #progress tracker upper,lower = trajIO.layering(com_lipids[t]) original = {} original['upper'] = upper original['lower'] = lower for layer in ['upper','lower']: #clustering clusters = percentages.cluster(original[layer],percentage) for size in cluster_sizes: for i in range(size): Nparticles = len(clusters[i]) normSizes[block][time][layer][size][i],weightedNormSizes[block][time][layer][size][i] = dc.mean_cluster_size(clusters[i],L[t],cutoff) if time == 1: alpha,beta = dc.meanRandom(original[layer],L[t],cutoff,Nparticles) logNorm[size][i] += alpha logWeighted[size][i] += beta #linear #linearNorm = linearWeighted = for block in range(Nblock): start = block*nlog linear_t = displacement.linear_gen(start,Nconf) com_lipids = displacement.linear_displacement(L,com_lipids,start,Nconf)