def __init__(self,
                 full=False,
                 binary=True,
                 first_sparsity=0.8,
                 rest_sparsity=0.9,
                 hid=4096,
                 ind=768,
                 align=False):
        super(FC_large, self).__init__()
        self.align = align
        self.pruned = False
        self.hid = hid
        self.ind = ind

        self.full = full
        self.binary = binary

        if full:
            self.fc1 = nn.Linear(ind, hid, bias=False)
            self.fc2 = nn.Linear(hid, hid, bias=False)
            self.fc3 = nn.Linear(hid, hid, bias=False)
            self.fc4 = nn.Linear(hid, 10, bias=False)
        elif binary:
            self.fc1 = binarized_modules.BinarizeLinear(ind, hid, bias=False)
            self.fc2 = binarized_modules.BinarizeLinear(hid, hid, bias=False)
            self.fc3 = binarized_modules.BinarizeLinear(hid, hid, bias=False)
            self.fc4 = binarized_modules.BinarizeLinear(hid, 10, bias=False)
        else:
            self.fc1 = binarized_modules.TernarizeLinear(first_sparsity,
                                                         ind,
                                                         hid,
                                                         bias=False,
                                                         align=align)
            self.fc2 = binarized_modules.TernarizeLinear(rest_sparsity,
                                                         hid,
                                                         hid,
                                                         bias=False,
                                                         align=align)
            self.fc3 = binarized_modules.TernarizeLinear(rest_sparsity,
                                                         hid,
                                                         hid,
                                                         bias=False,
                                                         align=align)
            self.fc4 = binarized_modules.TernarizeLinear(rest_sparsity,
                                                         hid,
                                                         10,
                                                         bias=False,
                                                         align=align)
        self.htanh1 = nn.Hardtanh()
        self.bn1 = nn.BatchNorm1d(hid)

        self.htanh2 = nn.Hardtanh()
        self.bn2 = nn.BatchNorm1d(hid)

        self.htanh3 = nn.Hardtanh()
        self.bn3 = nn.BatchNorm1d(hid)

        self.bn4 = nn.BatchNorm1d(10, affine=True)
        self.logsoftmax = nn.LogSoftmax(dim=1)
예제 #2
0
    def __init__(self):
        super(BinaryLenet, self).__init__()

        self.conv = nn.Sequential(
            bnn.BinarizeConv2d(in_channels=1,
                               out_channels=20,
                               kernel_size=(5, 5),
                               padding=2),
            # nn.BatchNorm2d(20),
            nn.ReLU(),
            # nn.Hardtanh(),
            # nn.LeakyReLU(),
            nn.MaxPool2d(kernel_size=(2, 2), stride=2),
            bnn.BinarizeConv2d(in_channels=20,
                               out_channels=50,
                               kernel_size=(5, 5),
                               padding=2),
            # nn.BatchNorm2d(50),
            nn.ReLU(),
            # nn.LeakyReLU(),
            # nn.Hardtanh(),
            nn.MaxPool2d(kernel_size=(2, 2), stride=2),
        )

        self.FC = nn.Sequential(
            bnn.BinarizeLinear(7 * 7 * 50, 1024),
            # nn.BatchNorm1d(1024),
            nn.ReLU(),
            # nn.Hardtanh(),
            # nn.LeakyReLU(),
            nn.Dropout(0.5),
            bnn.BinarizeLinear(1024, 10),
            # nn.Linear(28*28, 10),
            # nn.LogSoftmax(dim=1)
        )
        # self.regime = {
        #     0: {'optimizer': 'Adam', 'lr': 1e-3},
        #     50: {'lr': 5e-6,'weight_decay': 0},
        #     50: {'lr': 1e-7}
        # }
        self.regime = {
            0: {
                'optimizer': 'Adam',
                'lr': 5e-3
            },
            101: {
                'lr': 1e-3
            },
            142: {
                'lr': 5e-4
            },
            184: {
                'lr': 1e-4
            },
            220: {
                'lr': 1e-5
            }
        }
    def __init__(self,
                 full=False,
                 binary=True,
                 conv_thres=0.7,
                 fc_thres=0.9,
                 align=False,
                 pad=0):
        super(CNN_large, self).__init__()

        self.pruned = False
        self.full = full
        self.binary = binary
        self.pad = pad

        self.conv1 = binarized_modules.BinarizeConv2d(3,
                                                      128,
                                                      kernel_size=3,
                                                      stride=1,
                                                      padding=1,
                                                      bias=False)
        self.bn1 = nn.BatchNorm2d(128)
        self.htanh1 = nn.Hardtanh(inplace=True)

        if full:
            self.conv1 = nn.Conv2d(3,
                                   128,
                                   kernel_size=3,
                                   stride=1,
                                   padding=1,
                                   bias=False)
            self.conv2 = nn.Conv2d(128,
                                   128,
                                   kernel_size=3,
                                   stride=1,
                                   padding=1,
                                   bias=False)
            self.conv3 = nn.Conv2d(128,
                                   256,
                                   kernel_size=3,
                                   stride=1,
                                   padding=1,
                                   bias=False)
            self.conv4 = nn.Conv2d(256,
                                   256,
                                   kernel_size=3,
                                   stride=1,
                                   padding=1,
                                   bias=False)
            self.conv5 = nn.Conv2d(256,
                                   512,
                                   kernel_size=3,
                                   stride=1,
                                   padding=1,
                                   bias=False)
            self.conv6 = nn.Conv2d(512,
                                   512,
                                   kernel_size=3,
                                   stride=1,
                                   padding=1,
                                   bias=False)
            self.fc1 = nn.Linear(512 * 4 * 4, 1024, bias=False)
            self.fc2 = nn.Linear(1024, 1024, bias=False)
            self.fc3 = nn.Linear(1024, 10, bias=False)
        elif binary:
            self.conv1 = binarized_modules.BinarizeConv2d(3,
                                                          128,
                                                          kernel_size=3,
                                                          stride=1,
                                                          padding=0,
                                                          bias=False)
            self.conv2 = binarized_modules.BinarizeConv2d(128,
                                                          128,
                                                          kernel_size=3,
                                                          stride=1,
                                                          padding=0,
                                                          bias=False)
            self.conv3 = binarized_modules.BinarizeConv2d(128,
                                                          256,
                                                          kernel_size=3,
                                                          stride=1,
                                                          padding=0,
                                                          bias=False)
            self.conv4 = binarized_modules.BinarizeConv2d(256,
                                                          256,
                                                          kernel_size=3,
                                                          stride=1,
                                                          padding=0,
                                                          bias=False)
            self.conv5 = binarized_modules.BinarizeConv2d(256,
                                                          512,
                                                          kernel_size=3,
                                                          stride=1,
                                                          padding=0,
                                                          bias=False)
            self.conv6 = binarized_modules.BinarizeConv2d(512,
                                                          512,
                                                          kernel_size=3,
                                                          stride=1,
                                                          padding=0,
                                                          bias=False)
            self.conv7 = binarized_modules.BinarizeConv2d(512,
                                                          1024,
                                                          kernel_size=4,
                                                          padding=0,
                                                          bias=False)
            self.fc1 = binarized_modules.BinarizeLinear(1024, 1024, bias=False)
            self.fc2 = binarized_modules.BinarizeLinear(1024, 10, bias=False)
        else:
            self.conv1 = binarized_modules.BinarizeConv2d(3,
                                                          128,
                                                          kernel_size=3,
                                                          stride=1,
                                                          padding=0,
                                                          bias=False)
            self.conv2 = binarized_modules.TernarizeConv2d(conv_thres,
                                                           128,
                                                           128,
                                                           kernel_size=3,
                                                           padding=0,
                                                           bias=False,
                                                           align=align)
            self.conv3 = binarized_modules.TernarizeConv2d(conv_thres,
                                                           128,
                                                           256,
                                                           kernel_size=3,
                                                           padding=0,
                                                           bias=False,
                                                           align=align)
            self.conv4 = binarized_modules.TernarizeConv2d(conv_thres,
                                                           256,
                                                           256,
                                                           kernel_size=3,
                                                           padding=0,
                                                           bias=False,
                                                           align=align)
            self.conv5 = binarized_modules.TernarizeConv2d(conv_thres,
                                                           256,
                                                           512,
                                                           kernel_size=3,
                                                           padding=0,
                                                           bias=False,
                                                           align=align)
            self.conv6 = binarized_modules.TernarizeConv2d(conv_thres,
                                                           512,
                                                           512,
                                                           kernel_size=3,
                                                           padding=0,
                                                           bias=False,
                                                           align=align)
            self.conv7 = binarized_modules.TernarizeConv2d(fc_thres,
                                                           512,
                                                           1024,
                                                           kernel_size=4,
                                                           padding=0,
                                                           bias=False,
                                                           align=align)
            self.fc1 = binarized_modules.TernarizeLinear(fc_thres,
                                                         1024,
                                                         1024,
                                                         bias=False,
                                                         align=align)
            self.fc2 = binarized_modules.TernarizeLinear(0.49,
                                                         1024,
                                                         10,
                                                         bias=False)

        self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
        self.bn2 = nn.BatchNorm2d(128)
        self.htanh2 = nn.Hardtanh(inplace=True)

        self.bn3 = nn.BatchNorm2d(256)
        self.htanh3 = nn.Hardtanh(inplace=True)

        self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)
        self.bn4 = nn.BatchNorm2d(256)
        self.htanh4 = nn.Hardtanh(inplace=True)

        self.bn5 = nn.BatchNorm2d(512)
        self.htanh5 = nn.Hardtanh(inplace=True)

        self.pool6 = nn.MaxPool2d(kernel_size=2, stride=2)
        self.bn6 = nn.BatchNorm2d(512)
        self.htanh6 = nn.Hardtanh(inplace=True)

        self.bnfc1 = nn.BatchNorm1d(1024)
        self.htanhfc1 = nn.Hardtanh(inplace=True)

        self.bnfc2 = nn.BatchNorm1d(1024)
        self.htanhfc2 = nn.Hardtanh(inplace=True)

        self.bnfc3 = nn.BatchNorm1d(10, affine=True)
        self.logsoftmax = nn.LogSoftmax(dim=1)

        self.regime = {
            0: {
                'optimizer': 'Adam',
                'betas': (0.9, 0.999),
                'lr': 5e-3
            },
            40: {
                'lr': 1e-3
            },
            80: {
                'lr': 5e-4
            },
            100: {
                'lr': 1e-4
            },
            120: {
                'lr': 5e-5
            },
            140: {
                'lr': 1e-5
            }
        }