예제 #1
0
 def __init__(self,
              n_inpt,
              n_neurons=100,
              inh=17.5,
              dt=1.0,
              nu=(1e-4, 1e-2),
              wmin=0.0,
              wmax=1.0,
              norm=78.4,
              theta_plus=0.05,
              theta_decay=1e-7):
     self.n_neurons = n_neurons
     self.n_output = n_neurons
     self.network = DiehlAndCook2015v2(n_inpt=n_inpt,
                                       n_neurons=n_neurons,
                                       inh=inh,
                                       dt=dt,
                                       nu=nu,
                                       wmin=wmin,
                                       wmax=wmax,
                                       norm=norm,
                                       theta_plus=theta_plus,
                                       theta_decay=theta_decay)
예제 #2
0
def main(args):
    if args.update_steps is None:
        args.update_steps = max(
            250 // args.batch_size, 1
        )  #Its value is 16 # why is it always multiplied with step? #update_steps is how many batch to classify before updating the graphs

    update_interval = args.update_steps * args.batch_size  # Value is 240 #update_interval is how many pictures to classify before updating the graphs

    # Sets up GPU use
    torch.backends.cudnn.benchmark = False
    if args.gpu and torch.cuda.is_available():
        torch.cuda.manual_seed_all(
            args.seed
        )  #to enable reproducability of the code to get the same result
    else:
        torch.manual_seed(args.seed)

    # Determines number of workers to use
    if args.n_workers == -1:
        args.n_workers = args.gpu * 4 * torch.cuda.device_count()

    n_sqrt = int(np.ceil(np.sqrt(args.n_neurons)))

    if args.reduction == "sum":  #could have used switch to improve performance
        reduction = torch.sum  #weight updates for the batch
    elif args.reduction == "mean":
        reduction = torch.mean
    elif args.reduction == "max":
        reduction = max_without_indices
    else:
        raise NotImplementedError

    # Build network.
    network = DiehlAndCook2015v2(  #Changed here
        n_inpt=784,  # input dimensions are 28x28=784
        n_neurons=args.n_neurons,
        inh=args.inh,
        dt=args.dt,
        norm=78.4,
        nu=(1e-4, 1e-2),
        reduction=reduction,
        theta_plus=args.theta_plus,
        inpt_shape=(1, 28, 28),
    )

    # Directs network to GPU
    if args.gpu:
        network.to("cuda")

    # Load MNIST data.
    dataset = MNIST(
        PoissonEncoder(time=args.time, dt=args.dt),
        None,
        root=os.path.join(ROOT_DIR, "data", "MNIST"),
        download=True,
        train=True,
        transform=transforms.Compose(  #Composes several transforms together
            [
                transforms.ToTensor(),
                transforms.Lambda(lambda x: x * args.intensity)
            ]),
    )

    test_dataset = MNIST(
        PoissonEncoder(time=args.time, dt=args.dt),
        None,
        root=os.path.join(ROOT_DIR, "data", "MNIST"),
        download=True,
        train=False,
        transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Lambda(lambda x: x * args.intensity)
        ]),
    )

    # Neuron assignments and spike proportions.
    n_classes = 10  #changed
    assignments = -torch.ones(args.n_neurons)  #assignments is set to -1
    proportions = torch.zeros(args.n_neurons,
                              n_classes)  #matrix of 100x10 filled with zeros
    rates = torch.zeros(args.n_neurons,
                        n_classes)  #matrix of 100x10 filled with zeros

    # Set up monitors for spikes and voltages
    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(
            network.layers[layer], state_vars=["s"], time=args.time
        )  # Monitors:  Records state variables of interest. obj:An object to record state variables from during network simulation.
        network.add_monitor(
            spikes[layer], name="%s_spikes" % layer
        )  #state_vars: Iterable of strings indicating names of state variables to record.
        #param time: If not ``None``, pre-allocate memory for state variable recording.
    weights_im = None
    spike_ims, spike_axes = None, None

    # Record spikes for length of update interval.
    spike_record = torch.zeros(update_interval, args.time, args.n_neurons)

    if os.path.isdir(
            args.log_dir):  #checks if the path is a existing directory
        shutil.rmtree(
            args.log_dir)  # is used to delete an entire directory tree

    # Summary writer.
    writer = SummaryWriter(
        log_dir=args.log_dir, flush_secs=60
    )  #SummaryWriter: these utilities let you log PyTorch models and metrics into a directory for visualization
    #flush_secs:  in seconds, to flush the pending events and summaries to disk.
    for epoch in range(args.n_epochs):  #default is 1
        print("\nEpoch: {epoch}\n")

        labels = []

        # Create a dataloader to iterate and batch data
        dataloader = DataLoader(  #It represents a Python iterable over a dataset
            dataset,
            batch_size=args.batch_size,  #how many samples per batch to load
            shuffle=
            True,  #set to True to have the data reshuffled at every epoch
            num_workers=args.n_workers,
            pin_memory=args.
            gpu,  #If True, the data loader will copy Tensors into CUDA pinned memory before returning them.
        )

        for step, batch in enumerate(
                dataloader
        ):  #Enumerate() method adds a counter to an iterable and returns it in a form of enumerate object
            print("Step:", step)

            global_step = 60000 * epoch + args.batch_size * step

            if step % args.update_steps == 0 and step > 0:

                # Convert the array of labels into a tensor
                label_tensor = torch.tensor(labels)

                # Get network predictions.
                all_activity_pred = all_activity(spikes=spike_record,
                                                 assignments=assignments,
                                                 n_labels=n_classes)
                proportion_pred = proportion_weighting(
                    spikes=spike_record,
                    assignments=assignments,
                    proportions=proportions,
                    n_labels=n_classes,
                )

                writer.add_scalar(
                    tag="accuracy/all vote",
                    scalar_value=torch.mean(
                        (label_tensor.long() == all_activity_pred).float()),
                    global_step=global_step,
                )
                #Vennila: Records the accuracies in each step
                value = torch.mean(
                    (label_tensor.long() == all_activity_pred).float())
                value = value.item()
                accuracy.append(value)
                print("ACCURACY:", value)
                writer.add_scalar(
                    tag="accuracy/proportion weighting",
                    scalar_value=torch.mean(
                        (label_tensor.long() == proportion_pred).float()),
                    global_step=global_step,
                )
                writer.add_scalar(
                    tag="spikes/mean",
                    scalar_value=torch.mean(torch.sum(spike_record, dim=1)),
                    global_step=global_step,
                )

                square_weights = get_square_weights(
                    network.connections["X", "Y"].w.view(784, args.n_neurons),
                    n_sqrt,
                    28,
                )
                img_tensor = colorize(square_weights, cmap="hot_r")

                writer.add_image(
                    tag="weights",
                    img_tensor=img_tensor,
                    global_step=global_step,
                    dataformats="HWC",
                )

                # Assign labels to excitatory layer neurons.
                assignments, proportions, rates = assign_labels(
                    spikes=spike_record,
                    labels=label_tensor,
                    n_labels=n_classes,
                    rates=rates,
                )

                labels = []

            labels.extend(
                batch["label"].tolist()
            )  #for each batch or 16 pictures the labels of it is added to this list

            # Prep next input batch.
            inpts = {"X": batch["encoded_image"]}
            if args.gpu:
                inpts = {
                    k: v.cuda()
                    for k, v in inpts.items()
                }  #.cuda() is used to set up and run CUDA operations in the selected GPU

            # Run the network on the input.
            t0 = time()
            network.run(inputs=inpts, time=args.time, one_step=args.one_step
                        )  # Simulate network for given inputs and time.
            t1 = time() - t0

            # Add to spikes recording.
            s = spikes["Y"].get("s").permute((1, 0, 2))
            spike_record[(step * args.batch_size) %
                         update_interval:(step * args.batch_size %
                                          update_interval) + s.size(0)] = s

            writer.add_scalar(tag="time/simulation",
                              scalar_value=t1,
                              global_step=global_step)
            # if(step==1):
            #     input_exc_weights = network.connections["X", "Y"].w
            #     an_array = input_exc_weights.detach().cpu().clone().numpy()
            #     #print(np.shape(an_array))
            #     data = asarray(an_array)
            #     savetxt('data.csv',data)
            #     print("Beginning weights saved")
            # if(step==3749):
            #     input_exc_weights = network.connections["X", "Y"].w
            #     an_array = input_exc_weights.detach().cpu().clone().numpy()
            #     #print(np.shape(an_array))
            #     data2 = asarray(an_array)
            #     savetxt('data2.csv',data2)
            #     print("Ending weights saved")
            # Plot simulation data.
            if args.plot:
                input_exc_weights = network.connections["X", "Y"].w
                # print("Weights:",input_exc_weights)
                square_weights = get_square_weights(
                    input_exc_weights.view(784, args.n_neurons), n_sqrt, 28)
                spikes_ = {
                    layer: spikes[layer].get("s")[:, 0]
                    for layer in spikes
                }
                spike_ims, spike_axes = plot_spikes(spikes_,
                                                    ims=spike_ims,
                                                    axes=spike_axes)
                weights_im = plot_weights(square_weights, im=weights_im)

                plt.pause(1e-8)

            # Reset state variables.
            network.reset_state_variables()
        print(end_accuracy())  #Vennila
def main(seed=0,
         n_neurons=100,
         n_train=60000,
         n_test=10000,
         inhib=100,
         lr=1e-2,
         lr_decay=1,
         time=350,
         dt=1,
         theta_plus=0.05,
         theta_decay=1e7,
         intensity=1,
         progress_interval=10,
         update_interval=250,
         plot=False,
         train=True,
         gpu=False):

    assert n_train % update_interval == 0 and n_test % update_interval == 0, \
                            'No. examples must be divisible by update_interval'

    params = [
        seed, n_neurons, n_train, inhib, lr, lr_decay, time, dt, theta_plus,
        theta_decay, intensity, progress_interval, update_interval
    ]

    test_params = [
        seed, n_neurons, n_train, n_test, inhib, lr, lr_decay, time, dt,
        theta_plus, theta_decay, intensity, progress_interval, update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    n_examples = n_train if train else n_test
    n_sqrt = int(np.ceil(np.sqrt(n_neurons)))
    n_classes = 10

    # Build network.
    if train:
        network = DiehlAndCook2015v2(n_inpt=784,
                                     n_neurons=n_neurons,
                                     inh=inhib,
                                     dt=dt,
                                     norm=78.4,
                                     theta_plus=theta_plus,
                                     theta_decay=theta_decay,
                                     nu=[0, lr])

    else:
        network = load(os.path.join(params_path, model_name + '.pt'))
        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'],
            nu=network.connections['X', 'Y'].nu)
        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0

    # Load MNIST data.
    dataset = MNIST(path=data_path, download=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    images = images.view(-1, 784)
    images *= intensity

    # Record spikes during the simulation.
    spike_record = torch.zeros(update_interval, time, n_neurons)
    full_spike_record = torch.zeros(n_examples, n_neurons).long()

    # Neuron assignments and spike proportions.
    if train:
        assignments = -torch.ones_like(torch.Tensor(n_neurons))
        proportions = torch.zeros_like(torch.Tensor(n_neurons, n_classes))
        rates = torch.zeros_like(torch.Tensor(n_neurons, n_classes))
        ngram_scores = {}
    else:
        path = os.path.join(params_path,
                            '_'.join(['auxiliary', model_name]) + '.pt')
        assignments, proportions, rates, ngram_scores = torch.load(
            open(path, 'rb'))

    # Sequence of accuracy estimates.
    curves = {'all': [], 'proportion': [], 'ngram': []}
    predictions = {scheme: torch.Tensor().long() for scheme in curves.keys()}

    if train:
        best_accuracy = 0

    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=['s'],
                                time=time)
        network.add_monitor(spikes[layer], name='%s_spikes' % layer)

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    inpt_axes = None
    inpt_ims = None
    spike_ims = None
    spike_axes = None
    weights_im = None
    assigns_im = None
    perf_ax = None

    start = t()
    for i in range(n_examples):
        if i % progress_interval == 0:
            print(f'Progress: {i} / {n_examples} ({t() - start:.4f} seconds)')
            start = t()

        if i % update_interval == 0 and i > 0:
            if train:
                network.connections['X', 'Y'].update_rule.nu[1] *= lr_decay

            if i % len(labels) == 0:
                current_labels = labels[-update_interval:]
            else:
                current_labels = labels[i % len(images) - update_interval:i %
                                        len(images)]

            # Update and print accuracy evaluations.
            curves, preds = update_curves(curves,
                                          current_labels,
                                          n_classes,
                                          spike_record=spike_record,
                                          assignments=assignments,
                                          proportions=proportions,
                                          ngram_scores=ngram_scores,
                                          n=2)
            print_results(curves)

            for scheme in preds:
                predictions[scheme] = torch.cat(
                    [predictions[scheme], preds[scheme]], -1)

            # Save accuracy curves to disk.
            to_write = ['train'] + params if train else ['test'] + params
            f = '_'.join([str(x) for x in to_write]) + '.pt'
            torch.save((curves, update_interval, n_examples),
                       open(os.path.join(curves_path, f), 'wb'))

            if train:
                if any([x[-1] > best_accuracy for x in curves.values()]):
                    print(
                        'New best accuracy! Saving network parameters to disk.'
                    )

                    # Save network to disk.
                    network.save(os.path.join(params_path, model_name + '.pt'))
                    path = os.path.join(
                        params_path,
                        '_'.join(['auxiliary', model_name]) + '.pt')
                    torch.save((assignments, proportions, rates, ngram_scores),
                               open(path, 'wb'))
                    best_accuracy = max([x[-1] for x in curves.values()])

                # Assign labels to excitatory layer neurons.
                assignments, proportions, rates = assign_labels(
                    spike_record, current_labels, n_classes, rates)

                # Compute ngram scores.
                ngram_scores = update_ngram_scores(spike_record,
                                                   current_labels, n_classes,
                                                   2, ngram_scores)

            print()

        # Get next input sample.
        image = images[i % len(images)]
        sample = poisson(datum=image, time=time, dt=dt)
        inpts = {'X': sample}

        # Run the network on the input.
        network.run(inpts=inpts, time=time)

        retries = 0
        while spikes['Y'].get('s').sum() < 1 and retries < 3:
            retries += 1
            image *= 2
            sample = poisson(datum=image, time=time, dt=dt)
            inpts = {'X': sample}
            network.run(inpts=inpts, time=time)

        # Add to spikes recording.
        spike_record[i % update_interval] = spikes['Y'].get('s').t()
        full_spike_record[i] = spikes['Y'].get('s').t().sum(0).long()

        # Optionally plot various simulation information.
        if plot:
            # _input = image.view(28, 28)
            # reconstruction = inpts['X'].view(time, 784).sum(0).view(28, 28)
            _spikes = {layer: spikes[layer].get('s') for layer in spikes}
            input_exc_weights = network.connections[('X', 'Y')].w
            square_weights = get_square_weights(
                input_exc_weights.view(784, n_neurons), n_sqrt, 28)
            # square_assignments = get_square_assignments(assignments, n_sqrt)

            # inpt_axes, inpt_ims = plot_input(_input, reconstruction, label=labels[i], axes=inpt_axes, ims=inpt_ims)
            spike_ims, spike_axes = plot_spikes(_spikes,
                                                ims=spike_ims,
                                                axes=spike_axes)
            weights_im = plot_weights(square_weights, im=weights_im)
            # assigns_im = plot_assignments(square_assignments, im=assigns_im)
            # perf_ax = plot_performance(curves, ax=perf_ax)

            plt.pause(1e-8)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    i += 1

    if i % len(labels) == 0:
        current_labels = labels[-update_interval:]
    else:
        current_labels = labels[i % len(images) - update_interval:i %
                                len(images)]

    # Update and print accuracy evaluations.
    curves, preds = update_curves(curves,
                                  current_labels,
                                  n_classes,
                                  spike_record=spike_record,
                                  assignments=assignments,
                                  proportions=proportions,
                                  ngram_scores=ngram_scores,
                                  n=2)
    print_results(curves)

    for scheme in preds:
        predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]],
                                        -1)

    if train:
        if any([x[-1] > best_accuracy for x in curves.values()]):
            print('New best accuracy! Saving network parameters to disk.')

            # Save network to disk.
            if train:
                network.save(os.path.join(params_path, model_name + '.pt'))
                path = os.path.join(
                    params_path, '_'.join(['auxiliary', model_name]) + '.pt')
                torch.save((assignments, proportions, rates, ngram_scores),
                           open(path, 'wb'))

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    print('Average accuracies:\n')
    for scheme in curves.keys():
        print('\t%s: %.2f' % (scheme, float(np.mean(curves[scheme]))))

    # Save accuracy curves to disk.
    to_write = ['train'] + params if train else ['test'] + params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save((curves, update_interval, n_examples),
               open(os.path.join(curves_path, f), 'wb'))

    # Save results to disk.
    results = [
        np.mean(curves['all']),
        np.mean(curves['proportion']),
        np.mean(curves['ngram']),
        np.max(curves['all']),
        np.max(curves['proportion']),
        np.max(curves['ngram'])
    ]

    to_write = params + results if train else test_params + results
    to_write = [str(x) for x in to_write]
    name = 'train.csv' if train else 'test.csv'

    if not os.path.isfile(os.path.join(results_path, name)):
        with open(os.path.join(results_path, name), 'w') as f:
            if train:
                f.write(
                    'random_seed,n_neurons,n_train,inhib,lr,lr_decay,time,timestep,theta_plus,theta_decay,intensity,'
                    'progress_interval,update_interval,mean_all_activity,mean_proportion_weighting,'
                    'mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )
            else:
                f.write(
                    'random_seed,n_neurons,n_train,n_test,inhib,lr,lr_decay,time,timestep,theta_plus,theta_decay,'
                    'intensity,progress_interval,update_interval,mean_all_activity,mean_proportion_weighting,'
                    'mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )

    with open(os.path.join(results_path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')

    if labels.numel() > n_examples:
        labels = labels[:n_examples]
    else:
        while labels.numel() < n_examples:
            if 2 * labels.numel() > n_examples:
                labels = torch.cat(
                    [labels, labels[:n_examples - labels.numel()]])
            else:
                labels = torch.cat([labels, labels])

    # Compute confusion matrices and save them to disk.
    confusions = {}
    for scheme in predictions:
        confusions[scheme] = confusion_matrix(labels, predictions[scheme])

    to_write = ['train'] + params if train else ['test'] + test_params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save(confusions, os.path.join(confusion_path, f))

    # Save full spike record to disk.
    torch.save(full_spike_record, os.path.join(spikes_path, f))
예제 #4
0
def main(args):
    update_interval = args.update_steps * args.batch_size

    # Sets up GPU use
    torch.backends.cudnn.benchmark = False
    if args.gpu and torch.cuda.is_available():
        torch.cuda.manual_seed_all(args.seed)
    else:
        torch.manual_seed(args.seed)

    # Determines number of workers to use
    if args.n_workers == -1:
        args.n_workers = args.gpu * 4 * torch.cuda.device_count()

    n_sqrt = int(np.ceil(np.sqrt(args.n_neurons)))

    if args.reduction == "sum":
        reduction = torch.sum
    elif args.reduction == "mean":
        reduction = torch.mean
    elif args.reduction == "max":
        reduction = max_without_indices
    else:
        raise NotImplementedError

    # Build network.
    network = DiehlAndCook2015v2(
        n_inpt=784,
        n_neurons=args.n_neurons,
        inh=args.inh,
        dt=args.dt,
        norm=78.4,
        nu=(0.0, 1e-2),
        reduction=reduction,
        theta_plus=args.theta_plus,
        inpt_shape=(1, 28, 28),
    )

    # Directs network to GPU.
    if args.gpu:
        network.to("cuda")

    # Load MNIST data.
    dataset = MNIST(
        PoissonEncoder(time=args.time, dt=args.dt),
        None,
        root=os.path.join(ROOT_DIR, "data", "MNIST"),
        download=True,
        train=True,
        transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Lambda(lambda x: x * args.intensity)
        ]),
    )

    dataset, valid_dataset = torch.utils.data.random_split(
        dataset, [59000, 1000])

    test_dataset = MNIST(
        PoissonEncoder(time=args.time, dt=args.dt),
        None,
        root=os.path.join(ROOT_DIR, "data", "MNIST"),
        download=True,
        train=False,
        transform=transforms.Compose([
            transforms.ToTensor(),
            transforms.Lambda(lambda x: x * args.intensity)
        ]),
    )

    # Neuron assignments and spike proportions.
    n_classes = 10
    assignments = -torch.ones(args.n_neurons)
    proportions = torch.zeros(args.n_neurons, n_classes)
    rates = torch.zeros(args.n_neurons, n_classes)

    # Set up monitors for spikes and voltages
    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=["s"],
                                time=args.time)
        network.add_monitor(spikes[layer], name="%s_spikes" % layer)

    weights_im = None
    spike_ims, spike_axes = None, None

    # Record spikes for length of update interval.
    spike_record = torch.zeros(update_interval, args.time, args.n_neurons)

    if os.path.isdir(args.log_dir):
        shutil.rmtree(args.log_dir)

    # Summary writer.
    writer = SummaryWriter(log_dir=args.log_dir, flush_secs=60)

    for epoch in range(args.n_epochs):
        print(f"\nEpoch: {epoch}\n")

        labels = []

        # Get training data loader.
        dataloader = DataLoader(
            dataset=dataset,
            batch_size=args.batch_size,
            shuffle=True,
            num_workers=args.n_workers,
            pin_memory=args.gpu,
        )

        for step, batch in enumerate(dataloader):
            print(f"Step: {step} / {len(dataloader)}")

            global_step = 60000 * epoch + args.batch_size * step
            if step % args.update_steps == 0 and step > 0:
                # Disable learning.
                network.train(False)

                # Get test data loader.
                valid_dataloader = DataLoader(
                    dataset=valid_dataset,
                    batch_size=args.test_batch_size,
                    shuffle=True,
                    num_workers=args.n_workers,
                    pin_memory=args.gpu,
                )

                test_labels = []
                test_spike_record = torch.zeros(len(valid_dataset), args.time,
                                                args.n_neurons)
                t0 = time()
                for test_step, test_batch in enumerate(valid_dataloader):
                    # Prep next input batch.
                    inpts = {"X": test_batch["encoded_image"]}
                    if args.gpu:
                        inpts = {k: v.cuda() for k, v in inpts.items()}

                    # Run the network on the input (inference mode).
                    network.run(inpts=inpts,
                                time=args.time,
                                one_step=args.one_step)

                    # Add to spikes recording.
                    s = spikes["Y"].get("s").permute((1, 0, 2))
                    test_spike_record[(test_step * args.test_batch_size
                                       ):(test_step * args.test_batch_size) +
                                      s.size(0)] = s

                    # Plot simulation data.
                    if args.valid_plot:
                        input_exc_weights = network.connections["X", "Y"].w
                        square_weights = get_square_weights(
                            input_exc_weights.view(784, args.n_neurons),
                            n_sqrt, 28)
                        spikes_ = {
                            layer: spikes[layer].get("s")[:, 0]
                            for layer in spikes
                        }
                        spike_ims, spike_axes = plot_spikes(spikes_,
                                                            ims=spike_ims,
                                                            axes=spike_axes)
                        weights_im = plot_weights(square_weights,
                                                  im=weights_im)

                        plt.pause(1e-8)

                    # Reset state variables.
                    network.reset_()

                    test_labels.extend(test_batch["label"].tolist())

                t1 = time() - t0

                writer.add_scalar(tag="time/test",
                                  scalar_value=t1,
                                  global_step=global_step)

                # Convert the list of labels into a tensor.
                test_label_tensor = torch.tensor(test_labels)

                # Get network predictions.
                all_activity_pred = all_activity(
                    spikes=test_spike_record,
                    assignments=assignments,
                    n_labels=n_classes,
                )
                proportion_pred = proportion_weighting(
                    spikes=test_spike_record,
                    assignments=assignments,
                    proportions=proportions,
                    n_labels=n_classes,
                )

                writer.add_scalar(
                    tag="accuracy/valid/all vote",
                    scalar_value=100 * torch.mean(
                        (test_label_tensor.long()
                         == all_activity_pred).float()),
                    global_step=global_step,
                )
                writer.add_scalar(
                    tag="accuracy/valid/proportion weighting",
                    scalar_value=100 * torch.mean(
                        (test_label_tensor.long() == proportion_pred).float()),
                    global_step=global_step,
                )

                square_weights = get_square_weights(
                    network.connections["X", "Y"].w.view(784, args.n_neurons),
                    n_sqrt,
                    28,
                )
                img_tensor = colorize(square_weights, cmap="hot_r")

                writer.add_image(
                    tag="weights",
                    img_tensor=img_tensor,
                    global_step=global_step,
                    dataformats="HWC",
                )

                # Convert the array of labels into a tensor
                label_tensor = torch.tensor(labels)

                # Get network predictions.
                all_activity_pred = all_activity(spikes=spike_record,
                                                 assignments=assignments,
                                                 n_labels=n_classes)
                proportion_pred = proportion_weighting(
                    spikes=spike_record,
                    assignments=assignments,
                    proportions=proportions,
                    n_labels=n_classes,
                )

                writer.add_scalar(
                    tag="accuracy/train/all vote",
                    scalar_value=100 * torch.mean(
                        (label_tensor.long() == all_activity_pred).float()),
                    global_step=global_step,
                )
                writer.add_scalar(
                    tag="accuracy/train/proportion weighting",
                    scalar_value=100 * torch.mean(
                        (label_tensor.long() == proportion_pred).float()),
                    global_step=global_step,
                )

                # Assign labels to excitatory layer neurons.
                assignments, proportions, rates = assign_labels(
                    spikes=spike_record,
                    labels=label_tensor,
                    n_labels=n_classes,
                    rates=rates,
                )

                # Re-enable learning.
                network.train(True)

                labels = []

            labels.extend(batch["label"].tolist())

            # Prep next input batch.
            inpts = {"X": batch["encoded_image"]}
            if args.gpu:
                inpts = {k: v.cuda() for k, v in inpts.items()}

            # Run the network on the input (training mode).
            t0 = time()
            network.run(inpts=inpts, time=args.time, one_step=args.one_step)
            t1 = time() - t0

            writer.add_scalar(tag="time/train/step",
                              scalar_value=t1,
                              global_step=global_step)

            # Add to spikes recording.
            s = spikes["Y"].get("s").permute((1, 0, 2))
            spike_record[(step * args.batch_size) %
                         update_interval:(step * args.batch_size %
                                          update_interval) + s.size(0)] = s

            # Plot simulation data.
            if args.plot:
                input_exc_weights = network.connections["X", "Y"].w
                square_weights = get_square_weights(
                    input_exc_weights.view(784, args.n_neurons), n_sqrt, 28)
                spikes_ = {
                    layer: spikes[layer].get("s")[:, 0]
                    for layer in spikes
                }
                spike_ims, spike_axes = plot_spikes(spikes_,
                                                    ims=spike_ims,
                                                    axes=spike_axes)
                weights_im = plot_weights(square_weights, im=weights_im)

                plt.pause(1e-8)

            # Reset state variables.
            network.reset_()
예제 #5
0
    # encoded image input for the network
    encoded_img_input = {input_layer_name: encoded_img}

    # encoded image label
    encoded_img_label = sample["Label"]

    # add to the encoded input list along with the input layer name
    encoded_test_inputs.append({"Label" : encoded_img_label, "Inputs" : encoded_img_input})

### NETWORK CONFIGURATION ###

# initialize network
network = DiehlAndCook2015v2(
    n_inpt=input_neurons, 
    n_neurons=output_neurons, 
    dt=dt
    )

### SIMULATION VARIABLES ###

# record the spike times of each neuron during the simulation.
spike_record = torch.zeros(1, timesteps, output_neurons)

# record the mapping of each neuron to its corresponding label
assignments = -torch.ones_like(torch.Tensor(output_neurons))

# how frequently each neuron fires for each input class
rates = torch.zeros_like(torch.Tensor(output_neurons, n_classes))

# the likelihood of each neuron firing for each input class
예제 #6
0
    torch.cuda.manual_seed_all(seed)
else:
    torch.manual_seed(seed)

# Determines number of workers to use
if n_workers == -1:
    n_workers = gpu * 4 * torch.cuda.device_count()

n_sqrt = int(np.ceil(np.sqrt(n_neurons)))
start_intensity = intensity

network = DiehlAndCook2015v2(
    n_inpt=784,
    n_neurons=n_neurons,
    inh=inh,
    dt=dt,
    norm=78.4,
    nu=(1e-4, 1e-2),
    theta_plus=theta_plus,
    inpt_shape=(1, 28, 28),
)

if gpu:
    network.to("cuda")

# Load MNIST data.
dataset = MNIST(
    PoissonEncoder(time=time, dt=dt),
    None,
    root=os.path.join(ROOT_DIR, "data", "MNIST"),
    download=True,
    transform=transforms.Compose(
else:
    torch.manual_seed(seed)

if train:
    n_examples = n_train
else:
    n_examples = n_test

n_sqrt = int(np.ceil(np.sqrt(n_neurons)))
start_intensity = intensity
n_classes = 10

# Build network.
if train:
    network = DiehlAndCook2015v2(
        n_inpt=784, n_neurons=n_neurons, inh=inhib, dt=dt, norm=norm, theta_plus=theta_plus, theta_decay=theta_decay
    )

else:
    network = load_network(os.path.join(params_path, model_name + '.pt'))
    network.connections['X', 'Y'].update_rule = NoOp(
        connection=network.connections['X', 'Y'], nu=network.connections['X', 'Y'].nu
    )
    network.layers['Y'].theta_plus = 0
    network.layers['Y'].theta_decay = 0

# Load Fashion-MNIST data.
dataset = FashionMNIST(path=data_path, download=True)

if train:
    images, labels = dataset.get_train()