예제 #1
0
def const_seq_table(workflow, output_folder, filtered_dir,  mergers_file_path, threads):
    
         """ Builds ASV table, removes chimeras, creates read counts at each step, and fasta file with all sequences
            
            Args:
                workflow (anadama2.workflow): an instance of the workflow class
                output_folder (string):  path to output folder
                filtered_dir (string): path to directory with filtered files
                mergers_file_path (string): path to rds file that contains merged reads
                threads (int): number of threads
                
            Requires:
                dada2, tools, seqinr r packages

            Returns:
                string: path to rds file that contains ASV data
                string: path to read counts at each step tsv file
                string: path to fasta file with all sequences
         """
         
         read_counts_steps_path = files.SixteenS.path("counts_each_step", output_folder)
         
         seqtab_file_path = os.path.join(output_folder, "seqtab_final.rds")
         seqs_fasta_path = os.path.join(output_folder, "sequences.fasta")
         readcounts_rds = "Read_counts_filt.rds"
         asv_tsv = "all_samples_SV_counts.tsv"

         script_path = utilities.get_package_file("const_seq_table", "Rscript")
         version_script = utilities.get_package_file("dada2_version", "Rscript")

         version_command = """echo 'r' `r -e 'packageVersion("dada2")' | grep -C 1 dada2`"""

         workflow.add_task(
            "[vars[0]] \
              --output_dir=[args[0]]\
              --filtered_dir=[args[1]]\
              --merged_file_path=[depends[0]]\
              --read_counts_steps_path=[targets[0]]\
              --readcounts_rds=[vars[2]]\
              --asv_tsv=[vars[3]]\
              --seqtab_file_path=[targets[1]]\
              --seqs_fasta_path=[targets[2]]\
              --threads=[vars[1]]",
            depends = [mergers_file_path,TrackedExecutable("R", version_command="echo '" +  version_script + "' `" + version_script + "`")],
            targets = [read_counts_steps_path, seqtab_file_path, seqs_fasta_path],
            args = [output_folder, filtered_dir],
            vars = [script_path, threads, readcounts_rds, asv_tsv ],
            name = "construct_sequence_table"
            )
         return seqtab_file_path, read_counts_steps_path, seqs_fasta_path
예제 #2
0
def assign_taxonomy(workflow, output_folder, seqtab_file_path, ref_path, threads):
    
         """ Assigns taxonomy using green genes, silva, or rdp database, creates closed reference file
            
            Args:
                workflow (anadama2.workflow): an instance of the workflow class
                output_folder (string): path to output folder
                seqtab_file_path (string): path to rds file that contains ASV data
                ref_path (string): reference database name
                threads (int):
                
            Requires:
                dada2 r package
                
            Returns:
                string: path to closed reference file
         """

         otu_closed_ref_path  = files.SixteenS.path("otu_table_closed_reference", output_folder)

         # check what reference db to use for taxonomy assignment
         if ref_path == "unite":
             refdb_path = config.SixteenS().unite
             refdb_species_path = "None"
         elif ref_path == "silva":
             refdb_path = config.SixteenS().silva_dada2 
             refdb_species_path = config.SixteenS().silva_species_dada2 
         elif ref_path == "rdp":
             refdb_path = config.SixteenS().rdp_dada2 
             refdb_species_path = config.SixteenS().rdp_species_dada2  
         else:    
             refdb_path = config.SixteenS().greengenes_dada2
             refdb_species_path = "None"

         script_path = utilities.get_package_file("assign_taxonomy", "Rscript")
             
         workflow.add_task(
            "[vars[2]] \
              --output_dir=[args[0]]\
              --refdb_path=[vars[0]]\
              --refdb_species_path=[vars[1]]\
              --seqtab_file_path=[depends[0]]\
              --otu_closed_ref_path=[targets[0]]\
              --threads=[vars[3]]",
            depends = [seqtab_file_path],
            targets = [otu_closed_ref_path],                              
            args = [output_folder],
            vars =[refdb_path, refdb_species_path, script_path, threads],
            name = "assign_taxonomy"
            )         
     
         return otu_closed_ref_path
예제 #3
0
def filter_trim(workflow,input_folder,output_folder,maxee,trunc_len_max,pair_id,threads):
    
         """ Filters samples by maxee and trims them, renders quality control plots
         of forward and reverse reads for each sample, creates read counts tsv and rds files.
            
            Args:
                workflow (anadama2.workflow): an instance of the workflow class
                input_folder (string): path to input folder
                output_folder (string):  path to output folder
                maxee (string): maxee value to use for filtering
                trunc_len_max (string): max length for truncating reads
                pair_id (string): pair identifier
                threads (int): number of threads
                
            Requires:
               dada2, gridExtra,tools r packages
                
            Returns:
                string: path to file that contains read counts before and after filtering
                string: path to folder with filtered and trimmed sample files
         """
         reads_plotF_png = files.SixteenS.path("readF_qc", output_folder)
         reads_plotR_png = files.SixteenS.path("readR_qc", output_folder)

         readcounts_tsv_path = os.path.join(output_folder, "Read_counts_after_filtering.tsv")
         readcounts_rds_path = os.path.join(output_folder, "Read_counts_filt.rds")
         filtered_dir = "filtered_input"
         script_path = utilities.get_package_file("filter_and_trim", "Rscript")
         workflow.add_task(
             "[vars[0]] \
               --input_dir=[args[0]]\
               --output_dir=[args[1]]\
               --filtered_dir=[vars[1]]\
               --maxee=[args[2]]\
               --trunc_len_max=[args[3]]\
               --readcounts_tsv_path=[targets[0]]\
               --readcounts_rds_path=[targets[1]]\
               --reads_plotF=[targets[2]]\
               --reads_plotR=[targets[3]]\
               --pair_id=[args[4]]\
               --threads=[args[5]]",
             depends =[TrackedDirectory(input_folder)],
             targets = [readcounts_tsv_path, readcounts_rds_path, reads_plotF_png, reads_plotR_png],
             args = [input_folder, output_folder, maxee, trunc_len_max, pair_id, threads],
             vars = [script_path,filtered_dir],
             name ="filter_and_trim"
             )
         return readcounts_tsv_path, filtered_dir
예제 #4
0
def learn_error(workflow, output_folder, filtered_dir, readcounts_tsv_path, threads):
    
         """ Learns error rates for each sample, renders error rates plots for forward and reverse reads
            
            Args:
                workflow (anadama2.workflow): an instance of the workflow class
                output_folder (string): path to output folder
                filtered_dir (string): path to directory with filtered files
                readcounts_tsv_path (string): path to read counts after filtering tsv file
                threads (int): number of threads

            Requires:
                dada2, ggplot2 r packages

            Returns:
                string: path to file that contains error rates of forward reads
                string: path to file that contains error rates of reverse reads
         """

         error_ratesF_png = files.SixteenS.path("error_ratesF", output_folder)
         error_ratesR_png = files.SixteenS.path("error_ratesR", output_folder)
         
         error_ratesF_path= os.path.join(output_folder, "error_ratesFWD.rds")
         error_ratesR_path =os.path.join(output_folder, "error_ratesREV.rds")

         script_path = utilities.get_package_file("learn_error_rates", "Rscript")
       
         workflow.add_task(
             "[vars[0]] \
               --output_dir=[args[0]]\
               --filtered_dir=[args[1]]\
               --error_ratesF_png=[targets[0]]\
               --error_ratesR_png=[targets[1]]\
               --error_ratesF_path=[targets[2]]\
               --error_ratesR_path=[targets[3]]\
               --threads=[vars[1]]",
             depends = [readcounts_tsv_path],
             targets = [error_ratesF_png, error_ratesR_png, error_ratesF_path, error_ratesR_path],  
             args = [output_folder, filtered_dir],
             vars = [script_path, threads],
             name = "learn_error_rates"
             )
         return error_ratesF_path, error_ratesR_path
예제 #5
0
def merge_paired_ends(workflow, output_dir, filtered_dir, error_ratesF_path, error_ratesR_path, threads, minoverlap, maxmismatch):
    
        """ Dereplicates and merges paired reads
            
            Args:
                workflow (anadama2.workflow): an instance of the workflow class
                output_folder (string): path to output folder
                filtered_dir (string): path to directory with filtered files
                error_ratesF_path (string): path to rds file that contains error rates of forward reads
                error_ratesR_path (string): path to rds file that contains error rates of reverse reads
                threads (int): number of threads
                minoverlap (int): the min number of pairs for overlap for the merge step
                maxmismatch (int): the max number of mismatch for pairs to merge
            Requires:
                dada2, tools r packages
                
            Returns:
                string: path to rds file that contains merged and dereplicated reads
         """

        mergers_file_path = os.path.join(output_dir, "mergers.rds")
        script_path = utilities.get_package_file("merge_paired_ends", "Rscript")
        
        workflow.add_task(
            "[vars[0]] \
              --output_dir=[args[0]]\
              --filtered_dir=[args[1]]\
              --error_ratesF_path=[depends[0]]\
              --error_ratesR_path=[depends[1]]\
              --mergers_file_path=[targets[0]]\
              --threads=[vars[1]]\
              --minoverlap=[args[2]]\
              --maxmismatch=[args[3]]",
            depends = [error_ratesF_path, error_ratesR_path],
            targets = [mergers_file_path],                       
            args = [output_dir, filtered_dir, minoverlap, maxmismatch],
            vars = [script_path, threads],
            name = "dereplicate_and_merge"
            )
        return mergers_file_path
예제 #6
0
workflow.add_argument("exclude-workflow-info",desc="do not include data processing task info in report", action="store_true")
workflow.add_argument("format",desc="the format for the report", default="pdf", choices=["pdf","html"])

# get the arguments from the command line
args = workflow.parse_args()

otu_table = files.SixteenS.path("otu_table_closed_reference",args.input, error_if_not_found=True)

# read and label the metadata
metadata=None
metadata_labels=None
if args.input_metadata:
    metadata=utilities.read_metadata(args.input_metadata, otu_table, ignore_features=args.metadata_exclude, otu_table=True)
    metadata_labels, metadata=utilities.label_metadata(metadata, categorical=args.metadata_categorical, continuous=args.metadata_continuous)

templates=[utilities.get_package_file("16S")]

log_file=None
# add the template for the data processing information
if not args.exclude_workflow_info:
    log_file=files.Workflow.path("log", args.input, error_if_not_found=True)

# identify method and list the required and optional files for the workflow
# these are expected to be included in the input folder

# for dada2/its workflow
if os.path.isfile(files.SixteenS.path("error_ratesF", args.input, error_if_not_found=False)):
    method = "dada2"
    if os.path.isdir(files.SixteenS.path("filtN", args.input, error_if_not_found=False)):
        method = "its"
    doc_title = method.upper() + " 16s Report"
예제 #7
0
if args.random_effects:
    additional_stats_tasks, permanova_plots = utilities.run_permanova(
        workflow, args.static_covariates, maaslin_tasks_info,
        args.input_metadata, args.scale, args.min_abundance,
        args.min_prevalence, args.permutations, args.output,
        additional_stats_tasks)
else:
    additional_stats_tasks, beta_diversity_plots, covariate_equation = utilities.run_beta_diversity(
        workflow, maaslin_tasks_info, args.input_metadata, args.min_abundance,
        args.min_prevalence, args.max_missing,
        [args.multivariable_fixed_effects, args.fixed_effects], args.output,
        additional_stats_tasks, args.random_effects, metadata_variables,
        args.adonis_method)

templates = [
    utilities.get_package_file("header"),
    utilities.get_package_file("stats")
]

# add the document to the workflow
doc_task = workflow.add_document(
    templates=templates,
    depends=maaslin_tasks + stratified_plots_tasks + [taxonomic_profile] +
    additional_stats_tasks,
    targets=workflow.name_output_files("stats_report." + args.format),
    vars={
        "title": "Stats Report",
        "project": args.project_name,
        "introduction_text": args.introduction_text,
        "taxonomic_profile": taxonomic_profile,
        "maaslin_tasks_info": maaslin_tasks_info,
wmgx_qc_counts = files.ShotGun.path("kneaddata_read_counts",
                                    wmgx_input_folder,
                                    error_if_not_found=True)
wmtx_qc_counts = files.ShotGun.path("kneaddata_read_counts",
                                    wmtx_input_folder,
                                    error_if_not_found=True)
taxonomic_profile = files.ShotGun.path("taxonomic_profile",
                                       wmgx_input_folder,
                                       error_if_not_found=True)
pathabundance = files.ShotGun.path("pathabundance_relab",
                                   wmgx_input_folder,
                                   error_if_not_found=True)

# get the templates for the report
templates = [
    utilities.get_package_file("header"),
    utilities.get_package_file("quality_control_paired_dna_rna"),
    utilities.get_package_file("taxonomy"),
    utilities.get_package_file("functional_dna_rna")
]

# add the template for the data processing information
log_file = None
if not args.exclude_workflow_info:
    templates += [utilities.get_package_file("workflow_info")]
    log_file = files.Workflow.path("log", args.input, error_if_not_found=True)

# add the document to the workflow
doc_task = workflow.add_document(
    templates=templates,
    depends=[wmgx_qc_counts, wmtx_qc_counts, taxonomic_profile, pathabundance],
예제 #9
0
def remove_primers(workflow,fwd_primer,rev_primer,input_folder,output_folder,pair_id,threads):
    """ Identifies primers and N filters samples
       Args:
           workflow (anadama2.workflow): an instance of the workflow class
           input_folder (string): path to input folder
           output_folder (string):  path to output folder
           fwd_primer (string): forward primer
           rev_primer (string): reverse primer
           pair_id (string): pair identifier
           threads (string): number of threads

       Requires:
          dada2, Biostrings, ShortRead, tools r packages

       Returns:
           string: path to folder with primers removed files
    """
    script_path = utilities.get_package_file("identify_primers", "Rscript")
    filtN_folder = os.path.join(output_folder,"filtN")
    primers_folder = os.path.join(output_folder,"primers")
    fwd_primer_file = os.path.join(primers_folder,"fwd_primer_file.txt")
    rev_primer_file = os.path.join(primers_folder,"rev_primer_file.txt")
    cutadapt_folder = os.path.join(output_folder, "cutadapt")

    # run identify primers task
    workflow.add_task(
        "[vars[0]]  \
          --input_dir=[args[3]] \
          --filtn_dir=[vars[1]] \
          --primers_dir=[vars[2]] \
          --threads=[args[4]] \
          --fwd_primer_file=[targets[0]] \
          --rev_primer_file=[targets[1]] \
          --fwd_primer=[args[0]] \
          --rev_primer=[args[1]] \
          --pair_id=[args[2]]",
        targets=[fwd_primer_file,rev_primer_file,
                 TrackedDirectory(filtN_folder)],
        args=[fwd_primer, rev_primer, pair_id,input_folder,threads],
        vars=[script_path,filtN_folder,primers_folder,output_folder],
        name="identify_primers"
    )

    pair_id2 = pair_id.replace("1", "2",1)
    fwd_files = sorted(fnmatch.filter(os.listdir(input_folder), "*"+pair_id+"*.fastq*"))
    rev_files = sorted(fnmatch.filter(os.listdir(input_folder), "*" + pair_id2 + "*.fastq*"))

    #run cutadapt to remove primers
    for i in range(0,len(fwd_files)):
        fwd_file=os.path.join(input_folder,fwd_files[i])
        rev_file = os.path.join(input_folder, rev_files[i])
        workflow.add_task(
            cutadapt_do,
            depends=[fwd_primer_file,
                     rev_primer_file,
                     fwd_file,
                     rev_file,
                     TrackedDirectory(filtN_folder),
                     TrackedExecutable("cutadapt",version_command="echo 'cutadapt' `cutadapt --version`")],
            targets=[TrackedDirectory(cutadapt_folder)],
            name="remove_primers"
        )

    return cutadapt_folder