예제 #1
0
 def test_replace_species_in_Reaction(self):
     c1 = Complex([self.s1, self.s_old])
     c2 = Complex([self.s1, self.s_new])
     r1 = Reaction.from_massaction([self.s1, self.s_old], [c1], k_forward=1)
     self.assertTrue(
         r1.replace_species(self.s_old, self.s_new) ==
         Reaction.from_massaction([self.s1, self.s_new], [c2], k_forward=1))
예제 #2
0
def test_old_reaction_interface_non_massaction():
    kb = 100
    ku = 10
    kex = 1.

    G = Species(name="G", material_type="dna") #DNA
    A = Species(name="A", material_type="protein") #Activator
    X = Species(name="X", material_type="protein")

    # hill positive
    with pytest.deprecated_call():
        Reaction([G], [G, X], propensity_type="hillpositive",
                 propensity_params={"k": kex, "n": 2.0, "K": float(kb/ku), "s1": A})

    # proportional hill positive
    with pytest.deprecated_call():
        Reaction([G], [G, X], propensity_type="proportionalhillpositive",
                 propensity_params={"k": kex, "n": 2.0, "K": float(kb/ku), "s1": A, "d": G})

    # hill Negative
    with pytest.deprecated_call():
        Reaction([G], [G, X], propensity_type="hillnegative",
                 propensity_params={"k": kex, "n": 2.0, "K": float(kb/ku), "s1": A})

    # proportional hill negative
    with pytest.deprecated_call():
        Reaction([G], [G, X], propensity_type="proportionalhillnegative",
                 propensity_params={"k": kex, "n": 2.0, "K": float(kb/ku), "s1": A, "d": G})
예제 #3
0
def test_reaction_list_flattening():
    sp1 = Species(name='test_species_a')
    sp2 = Species(name='test_species_b')
    k_f = 1
    mak = MassAction(k_forward=k_f)
    rxn1 = Reaction(inputs=[sp1, [sp1, sp2]], outputs=[[sp2, sp2], sp1], propensity_type=mak)
    rxn2 = Reaction(inputs=[sp1, sp1, sp2], outputs=[sp1, sp2, sp2], propensity_type=mak)
    assert rxn1 == rxn2
예제 #4
0
def test_old_reaction_interface_massaction():
    A = Species(name="A")

    with pytest.deprecated_call():
        Reaction([], [A, A], k=100)

    with pytest.deprecated_call():
        Reaction([A, A], [], k=1, k_rev=0.1)
예제 #5
0
def test_reaction_equality():
    """test for the_equality operator"""
    sp1 = Species(name='test_species_a')
    sp2 = Species(name='test_species_b')
    rxn1 = Reaction(inputs=[sp1, sp2], outputs=[sp2, sp2], propensity_type=MassAction(k_forward=1))
    rxn2 = Reaction(inputs=[sp2, sp1], outputs=[sp2, sp2], propensity_type=MassAction(k_forward=1))
    rxn3 = Reaction(inputs=[sp2, sp1], outputs=[sp2, sp2], propensity_type=MassAction(k_forward=10))
    rxn4 = Reaction(inputs=[sp2, sp1], outputs=[sp2], propensity_type=MassAction(k_forward=1))
    assert rxn1 == rxn2
    assert rxn1 != rxn3
    assert rxn1 != rxn4
예제 #6
0
    def test_check_crn_validity(self):

        checked_species, checked_reactions = ChemicalReactionNetwork.check_crn_validity(
            reactions=self.rxn_list, species=self.species_list)
        # test that the returned species list is the same as the species list supplied
        self.assertEqual(self.species_list, checked_species)
        # test that the returned reaction list is the same as the reaction list supplied
        self.assertEqual(self.rxn_list, checked_reactions)

        species_list_with_none = self.species_list.copy()
        # injecting a None to the species list
        species_list_with_none.append(None)
        # test whether a non-species object is detected and Value error has been raised
        #                                         A non-species object was used as a species: [test_species1, test_species2, None]!"'
        #                                         A non-species object was used as a species: [test_species1, test_species2, None]!"
        with self.assertRaisesRegexp(
                ValueError, "A non-species object was used as a species!"):
            ChemicalReactionNetwork.check_crn_validity(
                reactions=self.rxn_list, species=species_list_with_none)

        rxn_list_with_none = self.rxn_list.copy()
        # injecting a None to the reaction list
        rxn_list_with_none.append(None)
        # test whether a non-reaction object is detected and Value Error has been raised
        with self.assertRaisesRegexp(
                ValueError, 'A non-reaction object was used as a reaction!'):
            ChemicalReactionNetwork.check_crn_validity(
                reactions=rxn_list_with_none, species=self.species_list)

        rxn2 = Reaction(inputs=[self.s1], outputs=[self.s3], k=0.1)
        # test warning raised if a species (in the reaction outputs) is detected which is not part of the species list
        with self.assertWarnsRegex(
                Warning,
                f'contains a species {self.s3.name} which is not in the CRN'):
            ChemicalReactionNetwork.check_crn_validity(
                reactions=[rxn2], species=self.species_list, warnings=True)

        rxn3 = Reaction(inputs=[self.s4], outputs=[self.s2], k=0.1)
        # test warning raised if a species (in the reaction inputs) is detected which is not part of the species list
        with self.assertWarnsRegex(
                Warning,
                f'contains a species {self.s4.name} which is not in the CRN'):
            ChemicalReactionNetwork.check_crn_validity(
                reactions=[rxn3], species=self.species_list, warnings=True)

        # test duplicate reactions
        rxn_list = [self.rx1, self.rx1]
        with self.assertWarnsRegex(Warning,
                                   'may be duplicated in CRN definitions'):
            ChemicalReactionNetwork.check_crn_validity(
                reactions=rxn_list, species=self.species_list, warnings=True)
예제 #7
0
def test_species_merging():
    sp1 = Species(name='test_species_a')
    chem_complexes = [WeightedSpecies(species=sp1, stoichiometry=2),
                      WeightedSpecies(species=sp1, stoichiometry=1)]
    rxn = Reaction(inputs=chem_complexes, outputs=[], propensity_type=MassAction(k_forward=1))
    # same species with different stoichiometry gets merged into one species
    assert len(rxn.inputs) == 1

    sp1 = Species(name='test_species_a')
    chem_complexes = [WeightedSpecies(species=sp1, stoichiometry=2),
                      WeightedSpecies(species=sp1, stoichiometry=1)]
    rxn = Reaction(inputs=[], outputs=chem_complexes, propensity_type=MassAction(k_forward=1))

    # same species with different stoichiometry gets merged into one species
    assert len(rxn.outputs) == 1
예제 #8
0
    def test_compile_crn(self):
        a = Species(name='a')
        b = Species(name='b')

        species_list = [a, b]

        rxn = Reaction.from_massaction(inputs=[a], outputs=[b], k_forward=0.1)

        CRN = ChemicalReactionNetwork(species_list, [rxn])

        # create a component
        component = Component("comp")

        # creating a mock update function to decouple the update process from the rest of the code
        def mock_update_reactions():
            rxn = Reaction.from_massaction(inputs=[a], outputs=[b], k_forward=0.1)
            return [rxn]

        def mock_update_species():
            return [a, b]

        component.update_species = mock_update_species
        component.update_reactions = mock_update_reactions

        mixture = Mixture(components=[component])

        crn_from_mixture = mixture.compile_crn()
        # test that the mixture has the same species as the manually build CRN object
        self.assertEqual(set(CRN.species), set(crn_from_mixture.species))
        # test that the mixture has the same reactions as the manually build CRN object
        self.assertEqual(CRN.reactions, crn_from_mixture.reactions)
    def test_get_all_species_containing(self):
        from biocrnpyler import ChemicalReactionNetwork
        from biocrnpyler import Species
        from biocrnpyler import Reaction

        s1 = Species(name='test_species1')
        s2 = Species(name='test_species2')

        species_list = [s1, s2]

        rx1 = Reaction(inputs=[s1], outputs=[s2], k=0.1)
        rxn_list = [rx1]

        crn = ChemicalReactionNetwork(species=species_list, reactions=rxn_list)

        s3 = Species(name='test_species3')

        with self.assertRaises(ValueError):
            crn.get_all_species_containing(species=species_list)

        rtn_species_list = crn.get_all_species_containing(species=s3)
        self.assertEqual(rtn_species_list, [])

        rtn_species_list = crn.get_all_species_containing(species=s1)
        self.assertEqual(rtn_species_list, [s1])

        rtn_species_list = crn.get_all_species_containing(
            species=s1, return_as_strings=True)
        self.assertEqual(rtn_species_list, [repr(s1)])
    def test_initial_condition_vector(self):
        from biocrnpyler import ChemicalReactionNetwork
        from biocrnpyler import Species
        from biocrnpyler import Reaction

        s1 = Species(name='test_species1')
        s2 = Species(name='test_species2')

        species_list = [s1, s2]

        rx1 = Reaction(inputs=[s1], outputs=[s2], k=0.1)
        rxn_list = [rx1]

        crn = ChemicalReactionNetwork(species=species_list, reactions=rxn_list)

        s3 = Species(name='test_species3')

        init_cond = {s1: 5, s3: 10}

        x0 = crn.initial_condition_vector(init_cond_dict=init_cond)

        not_in_the_list = False
        for key, value in init_cond.items():
            if value not in x0 and key == s3:
                not_in_the_list = True
        self.assertTrue(not_in_the_list)
    def test_write_sbml_file(self):

        import libsbml
        from biocrnpyler import ChemicalReactionNetwork
        from biocrnpyler import Species
        from biocrnpyler import Reaction

        s1 = Species(name='test_species1')
        s2 = Species(name='test_species2')

        species_list = [s1, s2]

        rx1 = Reaction(inputs=[s1], outputs=[s2], k=0.1)
        rxn_list = [rx1]

        crn = ChemicalReactionNetwork(species=species_list, reactions=rxn_list)
        document, _ = crn.generate_sbml_model()
        sbml_string = libsbml.writeSBMLToString(document)

        file_name = 'test_sbml.xml'
        with patch("builtins.open", new=mock_open()) as _file:
            crn.write_sbml_file(file_name)

            _file.assert_called_once_with(file_name, 'w')
            _file().write.assert_called_once_with(sbml_string)
예제 #12
0
    def test_compile_crn(self):
        from biocrnpyler import ChemicalReactionNetwork
        from biocrnpyler import Species
        from biocrnpyler import Reaction
        from biocrnpyler import Mixture

        a = Species(name='a')
        b = Species(name='b')

        species_list = [a, b]

        def mock_update_reactions():
            rxn = Reaction(inputs=[a], outputs=[b], k=0.1)
            return [rxn]

        rxn = Reaction(inputs=[a], outputs=[b], k=0.1)

        CRN = ChemicalReactionNetwork(species_list, [rxn])

        mixture = Mixture(species=species_list)
        mixture.update_reactions = mock_update_reactions

        crn_from_mixture = mixture.compile_crn()
        self.assertEqual(CRN.species, crn_from_mixture.species)
        self.assertEqual(CRN.reactions, crn_from_mixture.reactions)
예제 #13
0
    def test_complex_set_equality(self):
        sp1 = Species(name='test_species_a')
        sp2 = Species(name='test_species_b')

        # test whether two reactions with the same species are equal
        rxn1 = Reaction(inputs=[sp1], outputs=[], k=0.1, input_coefs=[1])

        rtn = Reaction.complex_set_equality(c1=rxn1.inputs,
                                            c1_coefs=rxn1.input_coefs,
                                            c2=rxn1.inputs,
                                            c2_coefs=rxn1.input_coefs)
        self.assertTrue(rtn)

        # test that two reactions have the two species with equal coefficients are equal
        rxn2 = Reaction(inputs=[sp1],
                        outputs=[sp2],
                        k=0.1,
                        input_coefs=[1],
                        output_coefs=[1])
        rtn = Reaction.complex_set_equality(c1=rxn1.inputs,
                                            c1_coefs=rxn1.input_coefs,
                                            c2=rxn2.inputs,
                                            c2_coefs=rxn2.input_coefs)
        self.assertTrue(rtn)

        # test that two reactions have the two species with different coefficients are not equal
        rxn1 = Reaction(inputs=[sp1], outputs=[], k=0.1, input_coefs=[1])
        rxn2 = Reaction(inputs=[sp2], outputs=[], k=0.1, input_coefs=[2])

        rtn2 = Reaction.complex_set_equality(c1=rxn1.inputs,
                                             c1_coefs=rxn1.input_coefs,
                                             c2=rxn2.inputs,
                                             c2_coefs=rxn2.input_coefs)
        self.assertFalse(rtn2)

        # test that two reactions with different species are not equal
        rxn1 = Reaction(inputs=[sp1, sp2],
                        outputs=[],
                        k=0.1,
                        input_coefs=[1, 2])
        rxn2 = Reaction(inputs=[sp2], outputs=[], k=0.1, input_coefs=[2])

        rtn3 = Reaction.complex_set_equality(c1=rxn1.inputs,
                                             c1_coefs=rxn1.input_coefs,
                                             c2=rxn2.inputs,
                                             c2_coefs=rxn2.input_coefs)
        self.assertFalse(rtn3)
    def test_check_crn_validity(self):
        from biocrnpyler import ChemicalReactionNetwork
        from biocrnpyler import Species
        from biocrnpyler import Reaction

        s1 = Species(name='test_species1')
        s2 = Species(name='test_species2')
        species_list = [s1, s2]

        rx1 = Reaction(inputs=[s1], outputs=[s2], k=0.1)
        rxn_list = [rx1]

        checked_species, checked_reactions = ChemicalReactionNetwork.check_crn_validity(
            reactions=rxn_list, species=species_list)

        self.assertEqual(species_list, checked_species)

        self.assertEqual(rxn_list, checked_reactions)

        species_list_with_none = species_list.copy()
        species_list_with_none.append(None)
        with self.assertRaises(ValueError):
            ChemicalReactionNetwork.check_crn_validity(
                reactions=rxn_list, species=species_list_with_none)

        rxn_list_with_none = rxn_list.copy()
        rxn_list_with_none.append(None)
        with self.assertRaises(ValueError):
            ChemicalReactionNetwork.check_crn_validity(
                reactions=rxn_list_with_none, species=species_list)

        s3 = Species(name='test_species3')
        s4 = Species(name='test_species4')

        rxn2 = Reaction(inputs=[s1], outputs=[s3], k=0.1)
        with self.assertWarns(Warning):
            ChemicalReactionNetwork.check_crn_validity(reactions=[rxn2],
                                                       species=species_list,
                                                       warnings=True)

        rxn3 = Reaction(inputs=[s4], outputs=[s2], k=0.1)
        with self.assertWarns(Warning):
            ChemicalReactionNetwork.check_crn_validity(reactions=[rxn3],
                                                       species=species_list,
                                                       warnings=True)
예제 #15
0
    def test_replace_species_with_a_non_massaction_reaction(self):
        c1 = Complex([self.s1, self.s_old])

        prop_hill_old = ProportionalHillPositive(k=1.,
                                                 s1=self.s1,
                                                 K=10,
                                                 d=self.s_old,
                                                 n=2)
        r1 = Reaction([self.s1, self.s_old], [c1],
                      propensity_type=prop_hill_old)
        prop_hill_new = ProportionalHillPositive(k=1.,
                                                 s1=self.s1,
                                                 K=10,
                                                 d=self.s_new,
                                                 n=2)
        r1_new = Reaction([self.s1, self.s_new],
                          [c1.replace_species(self.s_old, self.s_new)],
                          propensity_type=prop_hill_new)
        self.assertTrue(r1.replace_species(self.s_old, self.s_new) == r1_new)
예제 #16
0
    def setUp(self) -> None:
        """this method gets executed before every test"""
        self.s1 = Species(name='test_species1')
        self.s2 = Species(name='test_species2')
        self.s3 = Species(name='test_species3')
        self.s4 = Species(name='test_species4')

        self.species_list = [self.s1, self.s2]
        # creating a valid reaction two species
        self.rx1 = Reaction(inputs=[self.s1], outputs=[self.s2], k=0.1)
        self.rxn_list = [self.rx1]

        self.crn = ChemicalReactionNetwork(species=self.species_list, reactions=self.rxn_list)
예제 #17
0
    def test_replace_in_a_chemical_reaction_network(self):
        c1 = Complex([self.s1, self.s_old])
        c2 = Complex([self.s1, c1])
        species = [self.s1, self.s_old, c1, c2]
        r1 = Reaction.from_massaction([self.s1, self.s_old], [c1], k_forward=1)
        crn = ChemicalReactionNetwork(species=species, reactions=[r1])
        new_crn = crn.replace_species(self.s_old, self.s_new)

        self.assertTrue(self.s1 in new_crn.species)
        self.assertFalse(self.s_old in new_crn.species)

        self.assertTrue(self.s_new in new_crn.species)
        self.assertFalse(c1 in new_crn.species)
        self.assertFalse(c2 in new_crn.species)
        c1_new = Complex([self.s1, self.s_new])
        c2_new = Complex([self.s1, c1_new])
        self.assertTrue(c1_new in new_crn.species)
        self.assertTrue(c2_new in new_crn.species)
        r1_new = Reaction.from_massaction([self.s1, self.s_new], [c1_new],
                                          k_forward=1)
        self.assertFalse(r1 in new_crn.reactions)
        self.assertTrue(r1_new in new_crn.reactions)
예제 #18
0
    def test_reaction_protection(self):
        #tests that Reactions cannot be changed once they are in a CRN
        S = Species("S")
        S2 = Species("S2")
        R = Reaction.from_massaction([S], [S2], k_forward=1.0)
        R2 = Reaction.from_massaction([S2], [S], k_forward=1.0)
        CRN = ChemicalReactionNetwork([S, S2], [R])

        #Internal reactions copied correctly to return
        assert R in CRN.reactions
        assert not R is CRN._reactions[0]

        #Returned list does not effect internal reactions
        CRN.reactions[0] = R2
        assert R2 not in CRN.reactions

        #add reactions effects internal reaction list
        CRN.add_reactions(R2)
        assert R2 in CRN.reactions
        assert not R2 is CRN._reactions[1]

        with self.assertRaisesRegex(
                AttributeError,
                "The reactions in a CRN cannot be removed or modified*"):
            CRN.reactions = []

        #test bypassing reaction protection
        CRN = ChemicalReactionNetwork([], [])
        CRN.add_reactions([R], copy_reactions=False)
        assert R is CRN._reactions[0]
        assert S in CRN.species

        #test bypassing reaction protection
        CRN = ChemicalReactionNetwork([], [])
        CRN.add_reactions([R], add_species=False)
        assert not S in CRN.species
예제 #19
0
    def test_compile_crn_directives(self):
        a = Species(name='a')
        b = Species(name='b')

        species_list = [a, b]

        rxn = Reaction.from_massaction(inputs=[a], outputs=[b], k_forward=0.1)

        CRN = ChemicalReactionNetwork(species_list, [rxn])

        # create a component
        component = Component("comp")

        # creating a mock update function to decouple the update process from the rest of the code
        def mock_update_reactions():
            rxn = Reaction.from_massaction(inputs=[a], outputs=[b], k_forward=0.1)
            return [rxn]

        def mock_update_species():
            return [a, b]

        component.update_species = mock_update_species
        component.update_reactions = mock_update_reactions

        mixture = Mixture(components=[component])

        #All the directives used below should not change the CRN. 
        #They just remove some checks and safegaurds, but compilation should work the same in this simple case.
        #directives are best used in specific cases to compile very large models where speed is essential

        crn_from_mixture1 = mixture.compile_crn(copy_objects = False)
        # test that the mixture has the same species as the manually build CRN object
        self.assertEqual(set(CRN.species), set(crn_from_mixture1.species))
        # test that the mixture has the same reactions as the manually build CRN object
        self.assertEqual(CRN.reactions, crn_from_mixture1.reactions)


        crn_from_mixture2 = mixture.compile_crn(add_reaction_species = False)
        # test that the mixture has the same species as the manually build CRN object
        self.assertEqual(set(CRN.species), set(crn_from_mixture2.species))
        # test that the mixture has the same reactions as the manually build CRN object
        self.assertEqual(CRN.reactions, crn_from_mixture2.reactions)

        crn_from_mixture3 = mixture.compile_crn(initial_concentrations_at_end = True)
        # test that the mixture has the same species as the manually build CRN object
        self.assertEqual(set(CRN.species), set(crn_from_mixture3.species))
        # test that the mixture has the same reactions as the manually build CRN object
        self.assertEqual(CRN.reactions, crn_from_mixture3.reactions)
예제 #20
0
    def test_write_sbml_file(self):
        s1, s2 = Species("S1"), Species("S2")
        rx1 = Reaction.from_massaction(inputs=[s1],
                                       outputs=[s2],
                                       k_forward=0.1)
        crn = ChemicalReactionNetwork(species=[s1, s2], reactions=[rx1])

        model_id = 'test_model'
        document, _ = crn.generate_sbml_model(model_id=model_id)
        sbml_string = libsbml.writeSBMLToString(document)

        file_name = 'test_sbml.xml'
        with patch("builtins.open", new=mock_open()) as _file:
            crn.write_sbml_file(file_name, model_id=model_id)

            _file.assert_called_once_with(file_name, 'w')
            _file().write.assert_called_once_with(sbml_string)
    def test_generate_sbml_model(self):
        from biocrnpyler import ChemicalReactionNetwork
        from biocrnpyler import Species
        from biocrnpyler import Reaction

        s1 = Species(name='test_species1')
        s2 = Species(name='test_species2')

        species_list = [s1, s2]

        rx1 = Reaction(inputs=[s1], outputs=[s2], k=0.1)
        rxn_list = [rx1]

        crn = ChemicalReactionNetwork(species=species_list, reactions=rxn_list)

        document, model = crn.generate_sbml_model()

        self.assertEqual(len(model.getListOfSpecies()), len(crn.species))
        self.assertEqual(len(model.getListOfReactions()), len(crn.reactions))
예제 #22
0
    def test_generate_sbml_model(self):

        # generate an sbml model
        document, model = self.crn.generate_sbml_model()
        # all species from the CRN are accounted for
        self.assertEqual(len(model.getListOfSpecies()), len(self.crn.species))
        # all reactions from the CRN are accounted for
        self.assertEqual(len(model.getListOfReactions()), len(self.crn.reactions))

        # test a reversible reaction
        rx1 = Reaction(inputs=[self.s1], outputs=[self.s2], k=0.1, k_rev=0.1)
        rxn_list = [rx1]
        crn = ChemicalReactionNetwork(species=self.species_list, reactions=rxn_list)

        # generate an sbml model
        document, model = crn.generate_sbml_model()
        # all species from the CRN are accounted for
        self.assertEqual(len(model.getListOfSpecies()), len(crn.species))
        # all reactions from the CRN are accounted for
        # the sbml represents a reverisble reaction with to separate reactions
        self.assertEqual(len(model.getListOfReactions()), 2*len(crn.reactions))
예제 #23
0
    def test_reaction_initialization(self):
        # warns if both input and output species are empty
        mak = MassAction(k_forward=0.1)
        with self.assertWarns(Warning):
            Reaction(inputs=[], outputs=[], propensity_type=mak)

        # test for invalid propensity type
        with self.assertRaises(ValueError):
            Reaction(inputs=[], outputs=[], propensity_type=Species)

        # input must be a valid species object
        with self.assertRaises(TypeError):
            Reaction(inputs=['a'], outputs=[], propensity_type=mak)
        # output must be a valid species object
        with self.assertRaises(TypeError):
            Reaction(inputs=[], outputs=['b'], propensity_type=mak)

        rxn = Reaction.from_massaction(inputs=[], outputs=[], k_forward=0.1, k_reverse=1)
        # test whether the reaction is registered as reversible
        self.assertTrue(rxn.is_reversible)
        # test whether the reaction is registered as massaction
        self.assertTrue(isinstance(rxn.propensity_type, MassAction))

        # test WeightedSpecies inputs
        sp1 = Species(name='test_species_a')
        sp2 = Species(name='test_species_b')
        chem_com_sp1 = WeightedSpecies(species=sp1, stoichiometry=2)
        chem_com_sp2 = WeightedSpecies(species=sp2, stoichiometry=1)
        Reaction(inputs=[chem_com_sp1], outputs=[chem_com_sp2], propensity_type=MassAction(k_forward=1))

        # test different input and output lists
        Reaction(inputs=[chem_com_sp1], outputs=[sp2], propensity_type=MassAction(k_forward=1))

        # mixing WeightedSpecies and Species is not allowed
        with self.assertRaises(TypeError):
            Reaction(inputs=[chem_com_sp1, sp2], outputs=[sp1], propensity_type=MassAction(k_forward=1))
예제 #24
0
    def test_compile_crn(self):
        a = Species(name='a')
        b = Species(name='b')

        species_list = [a, b]

        # creating a mock update function to decouple the update process from the rest of the code
        def mock_update_reactions():
            rxn = Reaction(inputs=[a], outputs=[b], k=0.1)
            return [rxn]

        rxn = Reaction(inputs=[a], outputs=[b], k=0.1)

        CRN = ChemicalReactionNetwork(species_list, [rxn])

        mixture = Mixture(species=species_list)
        mixture.update_reactions = mock_update_reactions

        crn_from_mixture = mixture.compile_crn()
        # test that the mixture has the same species as the manually build CRN object
        self.assertEqual(CRN.species, crn_from_mixture.species)
        # test that the mixture has the same reactions as the manually build CRN object
        self.assertEqual(CRN.reactions, crn_from_mixture.reactions)
예제 #25
0
    def test_complex_set_equality(self):
        from biocrnpyler import Reaction
        from biocrnpyler import Species

        rxn1 = Reaction(inputs=[], outputs=[], k=0.1)
        rxn2 = Reaction(inputs=[], outputs=[], k=0.1)

        rtn = Reaction.complex_set_equality(c1=rxn1.inputs,
                                            c1_coefs=rxn1.input_coefs,
                                            c2=rxn2.inputs,
                                            c2_coefs=rxn2.output_coefs)
        self.assertTrue(rtn)

        sp1 = Species(name='test_species_a')
        sp2 = Species(name='test_species_b')

        rxn1 = Reaction(inputs=[sp1], outputs=[], k=0.1)
        rxn2 = Reaction(inputs=[sp2], outputs=[], k=0.1)

        rtn2 = Reaction.complex_set_equality(c1=rxn1.inputs,
                                             c1_coefs=rxn1.input_coefs,
                                             c2=rxn2.inputs,
                                             c2_coefs=rxn2.output_coefs)
        self.assertFalse(rtn2)
예제 #26
0
    def test_reaction_initialization(self):
        from biocrnpyler import Reaction

        with self.assertWarns(Warning):
            Reaction(inputs=[],
                     outputs=[],
                     k=0.1,
                     propensity_type="massaction",
                     propensity_params=None)

        with self.assertRaises(ValueError):
            Reaction(inputs=[],
                     outputs=[],
                     k=0.1,
                     propensity_type="not_massaction",
                     k_rev=1)

        with self.assertRaises(ValueError):
            prop_types = [
                "hillpositive", "hillnegative", "proportionalhillpositive",
                "proportionalhillnegative"
            ]
            for prop_type in prop_types:
                Reaction(inputs=[],
                         outputs=[],
                         k=0.1,
                         propensity_type=prop_type,
                         propensity_params={'s1': 0})

        with self.assertRaises(ValueError):
            Reaction(inputs=[], outputs=[], k=0.1, propensity_type="dummy")

        with self.assertRaises(ValueError):
            Reaction(inputs=['a'], outputs=[], k=0.1)
            Reaction(inputs=[], outputs=['b'], k=0.1)

        with self.assertRaises(ValueError):
            Reaction(inputs=[], outputs=[], k=0)
            Reaction(inputs=[], outputs=[], k=-1)

        rxn = Reaction(inputs=[], outputs=[], k=0.1, k_rev=1)
        self.assertTrue(rxn.reversible)

        with self.assertRaises(ValueError):
            Reaction(inputs=[], outputs=[], k=0.1, input_coefs=[1, 2])

        with self.assertRaises(ValueError):
            Reaction(inputs=[], outputs=[], k=0.1, output_coefs=[1, 2])
예제 #27
0
 def mock_update_reactions():
     rxn = Reaction.from_massaction(inputs=[a], outputs=[b], k_forward=0.1)
     return [rxn]
예제 #28
0
    def test_check_crn_validity(self):

        checked_reactions, checked_species = ChemicalReactionNetwork.check_crn_validity(
            reactions=self.rxn_list, species=self.species_list)
        # test that the returned species list is the same as the species list supplied
        self.assertEqual(self.species_list, checked_species)
        # test that the returned reaction list is the same as the reaction list supplied
        self.assertEqual(self.rxn_list, checked_reactions)

        species_list_with_none = self.species_list.copy()
        # injecting a None to the species list
        species_list_with_none.append(None)
        # test whether a non-species object is detected and Value error has been raised
        #                                         A non-species object was used as a species: [test_species1, test_species2, None]!"'
        #                                         A non-species object was used as a species: [test_species1, test_species2, None]!"
        with self.assertRaisesRegex(
                ValueError, "A non-species object was used as a species!"):
            ChemicalReactionNetwork.check_crn_validity(
                reactions=self.rxn_list, species=species_list_with_none)

        rxn_list_with_none = self.rxn_list.copy()
        # injecting a None to the reaction list
        rxn_list_with_none.append(None)
        # test whether a non-reaction object is detected and Value Error has been raised
        with self.assertRaisesRegex(
                ValueError, 'A non-reaction object was used as a reaction!'):
            ChemicalReactionNetwork.check_crn_validity(
                reactions=rxn_list_with_none, species=self.species_list)

        rxn2 = Reaction.from_massaction(inputs=[self.s1],
                                        outputs=[self.s3],
                                        k_forward=0.1)
        # test warning raised if a species (in the reaction outputs) is detected which is not part of the species list
        with self.assertWarnsRegex(
                Warning, f'are not part of any reactions in the CRN'):
            ChemicalReactionNetwork.check_crn_validity(
                reactions=[rxn2],
                species=self.species_list,
                show_warnings=True)

        rxn3 = Reaction.from_massaction(inputs=[self.s4],
                                        outputs=[self.s2],
                                        k_forward=0.1)
        # test warning raised if a species (in the reaction inputs) is detected which is not part of the species list
        with self.assertWarnsRegex(
                Warning, f'are not part of any reactions in the CRN'):
            ChemicalReactionNetwork.check_crn_validity(
                reactions=[rxn3],
                species=self.species_list,
                show_warnings=True)

        # test warning if reaction has unlisted species
        rxn4 = Reaction.from_massaction(inputs=[self.s4, self.s3],
                                        outputs=[self.s2],
                                        k_forward=0.1)
        with self.assertWarnsRegex(
                Warning,
                f'are not listed in the Species list, but part of the reactions'
        ):
            ChemicalReactionNetwork.check_crn_validity(
                reactions=[rxn4],
                species=[self.s4, self.s2],
                show_warnings=True)

        # test duplicate reactions are both added
        rxn_list = [self.rx1, self.rx1]

        CRN = ChemicalReactionNetwork(species=[self.s1, self.s2],
                                      reactions=rxn_list)
        self.assertTrue(CRN.reactions.count(self.rx1) == 2)

        with self.assertWarnsRegex(Warning,
                                   'may be duplicated in CRN definitions'):
            ChemicalReactionNetwork.check_crn_validity(
                reactions=rxn_list,
                species=self.species_list,
                show_warnings=True)

        # test warning suppression
        with warnings.catch_warnings(record=True) as w:
            # Cause all warnings to always be triggered.
            ChemicalReactionNetwork.check_crn_validity(
                reactions=rxn_list,
                species=self.species_list,
                show_warnings=False)

        assert not w
예제 #29
0
    def test_reaction_initialization(self):
        # warns if both input and output species are empty
        with self.assertWarns(Warning):
            Reaction(inputs=[],
                     outputs=[],
                     k=0.1,
                     propensity_type="massaction",
                     propensity_params=None)

        # non-massaction propensities require propensity_params dict
        with self.assertRaises(ValueError):
            Reaction(inputs=[],
                     outputs=[],
                     k=0.1,
                     propensity_type="not_massaction")

        # non-massaction propensities cannot be reversible
        with self.assertRaises(ValueError):
            Reaction(inputs=[],
                     outputs=[],
                     k=0.1,
                     propensity_type="not_massaction",
                     propensity_params={},
                     k_rev=1)

        # test under specified propensity parameters
        propensity_types = [
            "hillpositive", "hillnegative", "proportionalhillpositive",
            "proportionalhillnegative"
        ]
        for propensity_type in propensity_types:
            with self.assertRaises(ValueError):
                Reaction(inputs=[],
                         outputs=[],
                         k=0.1,
                         propensity_type=propensity_type,
                         propensity_params={'s1': 0})

        # test when rate is missing from the propensity parameter dictionary for a general propensity
        with self.assertRaises(ValueError):
            Reaction(inputs=[],
                     outputs=[],
                     k=0.1,
                     propensity_type='general',
                     propensity_params={})

        # test unknown propensity type
        with self.assertRaises(ValueError):
            Reaction(inputs=[],
                     outputs=[],
                     k=0.1,
                     propensity_type="dummy",
                     propensity_params={})

        # input must be a valid species object
        with self.assertRaises(ValueError):
            Reaction(inputs=['a'], outputs=[], k=0.1)
        # output must be a valid species object
        with self.assertRaises(ValueError):
            Reaction(inputs=[], outputs=['b'], k=0.1)

        # reaction rate coefficient must be larger than zero
        with self.assertRaises(ValueError):
            Reaction(inputs=[], outputs=[], k=0)
        # reaction rate coefficient must be larger than zero
        with self.assertRaises(ValueError):
            Reaction(inputs=[], outputs=[], k=-1)

        rxn = Reaction(inputs=[], outputs=[], k=0.1, k_rev=1)
        # test whether the reaction is registered as reversible
        self.assertTrue(rxn.reversible)
        # test whether the reaction is registered as massaction
        self.assertTrue(rxn.propensity_type == 'massaction')

        # test overspecified mass action
        sp1 = Species(name='test_species_a')
        sp2 = Species(name='test_species_b')
        with self.assertWarns(Warning):
            Reaction(inputs=[sp1],
                     outputs=[sp2],
                     propensity_type="massaction",
                     propensity_params={},
                     k=0.1)

        # test whether the number of input and output coefficients match
        with self.assertRaises(ValueError):
            Reaction(inputs=[], outputs=[], k=0.1, input_coefs=[1, 2])

        # test whether the number of input and output coefficients match
        with self.assertRaises(ValueError):
            Reaction(inputs=[], outputs=[], k=0.1, output_coefs=[1, 2])
예제 #30
0
 def mock_update_reactions():
     rxn = Reaction(inputs=[a], outputs=[b], k=0.1)
     return [rxn]