def test_exec_sed_task_negative_initial_time(self): task = Task( id='task', model=Model( id='model', source=os.path.join(self.EXAMPLES_DIRNAME, 'S1_intro', 'bounce1.txt'), language=ModelLanguage.Smoldyn.value, ), simulation=UniformTimeCourseSimulation( initial_time=-0.01, output_start_time=-0.01, output_end_time=0.09, number_of_points=10, algorithm=Algorithm(kisao_id='KISAO_0000057', )), ) variables = [ Variable(id='time', symbol=Symbol.time.value, task=task), Variable(id='red', target='molcount red', task=task), Variable(id='green', target='molcount green', task=task), ] results, _ = smoldyn.biosimulators.combine.exec_sed_task( task, variables) self.assertEqual(set(results.keys()), set(['time', 'red', 'green'])) numpy.testing.assert_allclose(results['time'], numpy.linspace(-0.01, 0.09, 11), rtol=5e-6)
def test_create_actions_for_simulation(self): # CVODE simulation = UniformTimeCourseSimulation( initial_time=0., output_start_time=10., output_end_time=20., number_of_points=10, algorithm=Algorithm(kisao_id='KISAO_0000019', changes=[ AlgorithmParameterChange( kisao_id='KISAO_0000211', new_value='1e-6'), ]), ) actions, _ = create_actions_for_simulation(simulation) self.assertEqual(actions, [ 'generate_network({overwrite => 1})', 'simulate({t_start => 0.0, t_end => 20.0, n_steps => 20, method => "ode", atol => 1e-6})', ]) # Error handling: non-integer steps simulation.output_end_time = 20.1 with self.assertRaisesRegex(NotImplementedError, 'must specify an integer number of steps'): create_actions_for_simulation(simulation) # Error handling: non-zero initial time simulation.output_end_time = 20.0 simulation.initial_time = 5. simulation.algorithm.kisao_id = 'KISAO_0000019' create_actions_for_simulation(simulation) simulation.initial_time = 5. simulation.algorithm.kisao_id = 'KISAO_0000263' with self.assertRaisesRegex(NotImplementedError, 'must be 0'): create_actions_for_simulation(simulation) # Error handling: unknown algorithm simulation.algorithm.kisao_id = 'KISAO_0000448' with self.assertRaisesRegex(AlgorithmCannotBeSubstitutedException, 'No algorithm can be substituted'): create_actions_for_simulation(simulation) # Error handling: unknown algorithm parameter simulation.algorithm.kisao_id = 'KISAO_0000019' simulation.algorithm.changes[0].kisao_id = 'KISAO_0000001' with mock.patch.dict('os.environ', {'ALGORITHM_SUBSTITUTION_POLICY': 'NONE'}): with self.assertRaisesRegex( NotImplementedError, 'is not supported. Parameter must have'): create_actions_for_simulation(simulation) with mock.patch.dict( 'os.environ', {'ALGORITHM_SUBSTITUTION_POLICY': 'SIMILAR_VARIABLES'}): with pytest.warns(BioSimulatorsWarning, match='is not supported. Parameter must have'): create_actions_for_simulation(simulation)
def test_add_simulation_to_task(self): # CVODE task = Task() simulation = UniformTimeCourseSimulation( initial_time=0., output_start_time=10., output_end_time=20., number_of_points=10, algorithm=Algorithm( kisao_id='KISAO_0000019', changes=[ AlgorithmParameterChange(kisao_id='KISAO_0000211', new_value='1e-6'), ] ), ) add_simulation_to_task(task, simulation) self.assertEqual(task.actions, [ 'generate_network({overwrite => 1})', 'simulate({t_start => 0.0, t_end => 20.0, n_steps => 20, method => "ode", atol => 1e-6})', ]) # Error handling: non-integer steps simulation.output_end_time = 20.1 with self.assertRaisesRegex(NotImplementedError, 'must specify an integer number of steps'): add_simulation_to_task(task, simulation) # Error handling: non-zero initial time simulation.output_end_time = 20.0 simulation.initial_time = 5. simulation.algorithm.kisao_id = 'KISAO_0000019' add_simulation_to_task(task, simulation) simulation.initial_time = 5. simulation.algorithm.kisao_id = 'KISAO_0000263' with self.assertRaisesRegex(NotImplementedError, 'must be 0'): add_simulation_to_task(task, simulation) # Error handling: unknown algorithm simulation.algorithm.kisao_id = 'KISAO_0000001' with self.assertRaisesRegex(NotImplementedError, 'is not supported. Algorithm must have'): add_simulation_to_task(task, simulation) # Error handling: unknown algorithm parameter simulation.algorithm.kisao_id = 'KISAO_0000019' simulation.algorithm.changes[0].kisao_id = 'KISAO_0000001' with self.assertRaisesRegex(NotImplementedError, 'is not supported. Parameter must have'): add_simulation_to_task(task, simulation)
def test_gen_algorithms_from_specs(self): algs = gen_algorithms_from_specs( os.path.join(os.path.dirname(__file__), '..', 'fixtures', 'tellurium.json')) self.assertEqual(len(algs), 5) self.assertTrue(algs['KISAO_0000086'].is_equal( Algorithm( kisao_id='KISAO_0000086', changes=[ AlgorithmParameterChange(kisao_id='KISAO_0000107', new_value='true'), AlgorithmParameterChange(kisao_id='KISAO_0000485', new_value='1e-12'), AlgorithmParameterChange(kisao_id='KISAO_0000467', new_value='1.0'), ], ), ))
def test_does_simulator_have_capabilities_to_execute_sed_document(self): specs = get_simulator_specs('tellurium', 'latest') doc = SedDocument(tasks=[ Task(model=Model(language=ModelLanguage.SBML.value, ), simulation=UniformTimeCourseSimulation( algorithm=Algorithm(kisao_id='KISAO_0000019', changes=[ AlgorithmParameterChange( kisao_id='KISAO_0000209') ]))) ]) self.assertTrue( does_simulator_have_capabilities_to_execute_sed_document( doc, specs, alg_substitution_policy=AlgorithmSubstitutionPolicy.SAME_METHOD )) doc2 = copy.deepcopy(doc) doc2.tasks.append( RepeatedTask( sub_tasks=[SubTask(task=copy.deepcopy(doc2.tasks[0]))], )) self.assertTrue( does_simulator_have_capabilities_to_execute_sed_document( doc2, specs, alg_substitution_policy=AlgorithmSubstitutionPolicy.SAME_METHOD )) doc2 = copy.deepcopy(doc) doc2.tasks.append( RepeatedTask( sub_tasks=[SubTask(task=copy.deepcopy(doc2.tasks[0]))], )) doc2.tasks[1].sub_tasks[ 0].task.model.language = ModelLanguage.CellML.value self.assertFalse( does_simulator_have_capabilities_to_execute_sed_document( doc2, specs, alg_substitution_policy=AlgorithmSubstitutionPolicy.SAME_METHOD )) doc2 = copy.deepcopy(doc) doc2.tasks[0].model.language = ModelLanguage.CellML.value self.assertFalse( does_simulator_have_capabilities_to_execute_sed_document( doc2, specs, alg_substitution_policy=AlgorithmSubstitutionPolicy.SAME_METHOD )) doc2 = copy.deepcopy(doc) doc2.tasks[0].model.language = 'urn:sedml:language:unknown' self.assertFalse( does_simulator_have_capabilities_to_execute_sed_document( doc2, specs, alg_substitution_policy=AlgorithmSubstitutionPolicy.SAME_METHOD )) doc2 = copy.deepcopy(doc) doc2.tasks[0].simulation.algorithm.kisao_id = 'KISAO_0000088' self.assertFalse( does_simulator_have_capabilities_to_execute_sed_document( doc2, specs, alg_substitution_policy=AlgorithmSubstitutionPolicy.SAME_METHOD )) doc2 = copy.deepcopy(doc) doc2.tasks[0].simulation.algorithm.kisao_id = 'KISAO_0000088' self.assertTrue( does_simulator_have_capabilities_to_execute_sed_document( doc2, specs, alg_substitution_policy=AlgorithmSubstitutionPolicy. SAME_VARIABLES)) doc2 = copy.deepcopy(doc) doc2.tasks[0].simulation.algorithm.kisao_id = 'KISAO_0000560' self.assertTrue( does_simulator_have_capabilities_to_execute_sed_document( doc2, specs, alg_substitution_policy=AlgorithmSubstitutionPolicy. SAME_VARIABLES)) doc2 = copy.deepcopy(doc) doc2.tasks[0].simulation.algorithm.changes[ 0].kisao_id = 'KISAO_0000019' self.assertFalse( does_simulator_have_capabilities_to_execute_sed_document( doc2, specs, alg_substitution_policy=AlgorithmSubstitutionPolicy.SAME_METHOD )) specs = get_simulator_specs('pysces', 'latest') doc2 = copy.deepcopy(doc) doc2.tasks[0].simulation = OneStepSimulation(algorithm=Algorithm( kisao_id='KISAO_0000019')) self.assertFalse( does_simulator_have_capabilities_to_execute_sed_document( doc2, specs, alg_substitution_policy=AlgorithmSubstitutionPolicy.SAME_METHOD ))
def test_exec_sedml_docs_in_archive_without_log(self): archive = CombineArchive(contents=[ CombineArchiveContent( location='sim.sedml', format='http://identifiers.org/combine.specifications/sed-ml', ), CombineArchiveContent( location='model.xml', format='http://identifiers.org/combine.specifications/sbml', ), ], ) sed_doc = SedDocument() model = Model(id='model_1', source='model.xml', language=ModelLanguage.SBML.value) sed_doc.models.append(model) sim = UniformTimeCourseSimulation( id='sim_1', initial_time=0., output_start_time=0., output_end_time=10., number_of_points=10, algorithm=Algorithm(kisao_id='KISAO_0000019')) sed_doc.simulations.append(sim) task = Task(id='task_1', model=model, simulation=sim) sed_doc.tasks.append(task) sed_doc.data_generators.append( DataGenerator( id='data_gen_1', variables=[ Variable( id='var_1', target= "/sbml:sbml/sbml:model/sbml:listOfSpecies/sbml:species[@id='Trim']", target_namespaces={ 'sbml': 'http://www.sbml.org/sbml/level2/version4' }, task=task) ], math='var_1', )) sed_doc.data_generators.append( DataGenerator( id='data_gen_2', variables=[ Variable( id='var_2', target= "/sbml:sbml/sbml:model/sbml:listOfSpecies/sbml:species[@id='Clb']", target_namespaces={ 'sbml': 'http://www.sbml.org/sbml/level2/version4' }, task=task) ], math='var_2', )) report = Report(id='output_1') sed_doc.outputs.append(report) report.data_sets.append( DataSet(id='data_set_1', label='data_set_1', data_generator=sed_doc.data_generators[0])) report.data_sets.append( DataSet(id='data_set_2', label='data_set_2', data_generator=sed_doc.data_generators[1])) archive_dirname = os.path.join(self.tmp_dir, 'archive') os.makedirs(archive_dirname) shutil.copyfile( os.path.join(os.path.dirname(__file__), '..', 'fixtures', 'BIOMD0000000297.xml'), os.path.join(archive_dirname, 'model.xml')) SedmlSimulationWriter().run(sed_doc, os.path.join(archive_dirname, 'sim.sedml')) archive_filename = os.path.join(self.tmp_dir, 'archive.omex') CombineArchiveWriter().run(archive, archive_dirname, archive_filename) def sed_task_executer(task, variables, log=None, config=None): if log: log.algorithm = task.simulation.algorithm.kisao_id log.simulator_details = { 'attrib': 'value', } return VariableResults({ 'var_1': numpy.linspace(0., 10., task.simulation.number_of_points + 1), 'var_2': numpy.linspace(10., 20., task.simulation.number_of_points + 1), }), log def sed_task_executer_error(task, variables, log=None, config=None): raise ValueError('Big error') out_dir = os.path.join(self.tmp_dir, 'outputs') config = get_config() config.REPORT_FORMATS = [] config.VIZ_FORMATS = [] config.COLLECT_COMBINE_ARCHIVE_RESULTS = True config.LOG = True # with log sed_doc_executer = functools.partial(sedml_exec.exec_sed_doc, sed_task_executer) results, log = exec.exec_sedml_docs_in_archive( sed_doc_executer, archive_filename, out_dir, apply_xml_model_changes=False, config=config) self.assertEqual(set(results.keys()), set(['sim.sedml'])) self.assertEqual(set(results['sim.sedml'].keys()), set(['output_1'])) self.assertEqual(set(results['sim.sedml']['output_1'].keys()), set(['data_set_1', 'data_set_2'])) numpy.testing.assert_allclose( results['sim.sedml']['output_1']['data_set_1'], numpy.linspace(0., 10., 11)) numpy.testing.assert_allclose( results['sim.sedml']['output_1']['data_set_2'], numpy.linspace(10., 20., 11)) self.assertEqual(log.exception, None) self.assertEqual( log.sed_documents['sim.sedml'].tasks['task_1'].algorithm, task.simulation.algorithm.kisao_id) self.assertEqual( log.sed_documents['sim.sedml'].tasks['task_1'].simulator_details, {'attrib': 'value'}) sed_doc_executer = functools.partial(sedml_exec.exec_sed_doc, sed_task_executer_error) results, log = exec.exec_sedml_docs_in_archive( sed_doc_executer, archive_filename, out_dir, apply_xml_model_changes=False, config=config) self.assertIsInstance(log.exception, CombineArchiveExecutionError) config.DEBUG = True sed_doc_executer = functools.partial(sedml_exec.exec_sed_doc, sed_task_executer_error) with self.assertRaisesRegex(ValueError, 'Big error'): exec.exec_sedml_docs_in_archive(sed_doc_executer, archive_filename, out_dir, apply_xml_model_changes=False, config=config) # without log config.COLLECT_COMBINE_ARCHIVE_RESULTS = False config.LOG = False config.DEBUG = False sed_doc_executer = functools.partial(sedml_exec.exec_sed_doc, sed_task_executer) results, log = exec.exec_sedml_docs_in_archive( sed_doc_executer, archive_filename, out_dir, apply_xml_model_changes=False, config=config) self.assertEqual(results, None) self.assertEqual(log, None) sed_doc_executer = functools.partial(sedml_exec.exec_sed_doc, sed_task_executer_error) with self.assertRaisesRegex(CombineArchiveExecutionError, 'Big error'): exec.exec_sedml_docs_in_archive(sed_doc_executer, archive_filename, out_dir, apply_xml_model_changes=False, config=config) config.DEBUG = True sed_doc_executer = functools.partial(sedml_exec.exec_sed_doc, sed_task_executer_error) with self.assertRaisesRegex(ValueError, 'Big error'): exec.exec_sedml_docs_in_archive(sed_doc_executer, archive_filename, out_dir, apply_xml_model_changes=False, config=config)
def test_exec_sed_task_with_changes(self): task = Task( id='task', model=Model( id='model', source=os.path.join(os.path.dirname(__file__), 'fixtures', 'lotvolt.txt'), language=ModelLanguage.Smoldyn.value, ), simulation=UniformTimeCourseSimulation( initial_time=0., output_start_time=0., output_end_time=0.1, number_of_points=10, algorithm=Algorithm(kisao_id='KISAO_0000057', changes=[ AlgorithmParameterChange( kisao_id='KISAO_0000488', new_value='10'), ])), ) model = task.model sim = task.simulation variable_ids = ['rabbit', 'fox'] variables = [] for variable_id in variable_ids: variables.append( Variable(id=variable_id, target='molcount ' + variable_id, task=task)) preprocessed_task = smoldyn.biosimulators.combine.preprocess_sed_task( task, variables) results, _ = smoldyn.biosimulators.combine.exec_sed_task( task, variables, preprocessed_task=preprocessed_task) with self.assertRaises(AssertionError): for variable_id in variable_ids: numpy.testing.assert_allclose( results[variable_id][0:int(sim.number_of_points / 2 + 1)], results[variable_id][-int(sim.number_of_points / 2 + 1):]) # check simulation is repeatable preprocessed_task = smoldyn.biosimulators.combine.preprocess_sed_task( task, variables) results2, _ = smoldyn.biosimulators.combine.exec_sed_task( task, variables, preprocessed_task=preprocessed_task) for variable_id in variable_ids: numpy.testing.assert_allclose(results2[variable_id], results[variable_id]) # check simulation is repeatable in two steps sim.output_end_time = sim.output_end_time / 2 sim.number_of_points = int(sim.number_of_points / 2) model.changes = [] for variable_id in variable_ids: model.changes.append( ModelAttributeChange(target='fixmolcount ' + variable_id, new_value=None)) preprocessed_task = smoldyn.biosimulators.combine.preprocess_sed_task( task, variables) model.changes = [] results2, _ = smoldyn.biosimulators.combine.exec_sed_task( task, variables, preprocessed_task=preprocessed_task) for variable_id in variable_ids: numpy.testing.assert_allclose( results2[variable_id], results[variable_id][0:sim.number_of_points + 1]) for variable_id in variable_ids: model.changes.append( ModelAttributeChange(target='fixmolcount ' + variable_id, new_value=results2[variable_id][-1])) results3, _ = smoldyn.biosimulators.combine.exec_sed_task( task, variables, preprocessed_task=preprocessed_task) for variable_id in variable_ids: numpy.testing.assert_allclose( results3[variable_id], results[variable_id][-(sim.number_of_points + 1):]) # check model change modifies simulation model.changes = [] for variable_id in variable_ids: model.changes.append( ModelAttributeChange(target='fixmolcount ' + variable_id, new_value=None)) preprocessed_task = smoldyn.biosimulators.combine.preprocess_sed_task( task, variables) model.changes = [] results2, _ = smoldyn.biosimulators.combine.exec_sed_task( task, variables, preprocessed_task=preprocessed_task) for variable_id in variable_ids: numpy.testing.assert_allclose( results2[variable_id], results[variable_id][0:sim.number_of_points + 1]) for variable_id in variable_ids: model.changes.append( ModelAttributeChange(target='fixmolcount ' + variable_id, new_value=results2[variable_id][-1] + 1)) results3, _ = smoldyn.biosimulators.combine.exec_sed_task( task, variables, preprocessed_task=preprocessed_task) with self.assertRaises(AssertionError): for variable_id in variable_ids: numpy.testing.assert_allclose( results3[variable_id], results[variable_id][-(sim.number_of_points + 1):]) # check model change modifies simulation model.changes = [] for variable_id in variable_ids: model.changes.append( ModelAttributeChange(target='killmol ' + variable_id, new_value=None)) preprocessed_task = smoldyn.biosimulators.combine.preprocess_sed_task( task, variables) model.changes = [] results2, _ = smoldyn.biosimulators.combine.exec_sed_task( task, variables, preprocessed_task=preprocessed_task) for variable_id in variable_ids: numpy.testing.assert_allclose( results2[variable_id], results[variable_id][0:sim.number_of_points + 1]) for variable_id in variable_ids: model.changes.append( ModelAttributeChange(target='killmol ' + variable_id, new_value=0)) results3, _ = smoldyn.biosimulators.combine.exec_sed_task( task, variables, preprocessed_task=preprocessed_task) with self.assertRaises(AssertionError): for variable_id in variable_ids: numpy.testing.assert_allclose( results3[variable_id], results[variable_id][-(sim.number_of_points + 1):]) # preprocessing-time change model.changes = [] for variable_id in variable_ids: model.changes.append( ModelAttributeChange(target='define K_1', new_value=10)) results2, _ = smoldyn.biosimulators.combine.exec_sed_task( task, variables) for variable_id in variable_ids: numpy.testing.assert_allclose( results2[variable_id], results[variable_id][0:sim.number_of_points + 1]) model.changes = [] for variable_id in variable_ids: model.changes.append( ModelAttributeChange(target='define K_1', new_value=10)) preprocessed_task = smoldyn.biosimulators.combine.preprocess_sed_task( task, variables) with self.assertRaisesRegex( NotImplementedError, 'can only be changed during simulation preprocessing'): smoldyn.biosimulators.combine.exec_sed_task( task, variables, preprocessed_task=preprocessed_task) model.changes = [] results2, _ = smoldyn.biosimulators.combine.exec_sed_task( task, variables, preprocessed_task=preprocessed_task) for variable_id in variable_ids: numpy.testing.assert_allclose( results2[variable_id], results[variable_id][0:sim.number_of_points + 1]) model.changes = [] for variable_id in variable_ids: model.changes.append( ModelAttributeChange(target='define K_1', new_value=0)) preprocessed_task = smoldyn.biosimulators.combine.preprocess_sed_task( task, variables) model.changes = [] results2, _ = smoldyn.biosimulators.combine.exec_sed_task( task, variables, preprocessed_task=preprocessed_task) with self.assertRaises(AssertionError): for variable_id in variable_ids: numpy.testing.assert_allclose( results2[variable_id], results[variable_id][0:sim.number_of_points + 1])
def test_exec_sed_task(self): task = Task( id='task', model=Model( id='model', source=os.path.join(self.EXAMPLES_DIRNAME, 'S1_intro', 'bounce1.txt'), language=ModelLanguage.Smoldyn.value, ), simulation=UniformTimeCourseSimulation( initial_time=0., output_start_time=0.1, output_end_time=0.2, number_of_points=10, algorithm=Algorithm(kisao_id='KISAO_0000057', changes=[ AlgorithmParameterChange( kisao_id='KISAO_0000488', new_value='10'), ])), ) variables = [ Variable(id='time', symbol=Symbol.time.value, task=task), Variable(id='red', target='molcount red', task=task), Variable(id='green', target='molcount green', task=task), ] results, log = smoldyn.biosimulators.combine.exec_sed_task( task, variables) self.assertEqual(set(results.keys()), set(['time', 'red', 'green'])) numpy.testing.assert_allclose(results['time'], numpy.linspace(0.1, 0.2, 11)) for result in results.values(): self.assertEqual(result.shape, (11, )) self.assertFalse(numpy.any(numpy.isnan(result))) self.assertEqual(log.algorithm, 'KISAO_0000057') self.assertEqual( log.simulator_details, { 'class': 'smoldyn.Simulation', 'instanceAttributes': { 'setRandomSeed': 10 }, 'method': 'run', 'methodArguments': { 'start': 0., 'stop': 0.2, 'dt': 0.01, }, }) task.simulation.algorithm.changes.append( AlgorithmParameterChange('KISAO_0000254', '5')) results, log = smoldyn.biosimulators.combine.exec_sed_task( task, variables) self.assertEqual( log.simulator_details, { 'class': 'smoldyn.Simulation', 'instanceAttributes': { 'setRandomSeed': 10 }, 'method': 'run', 'methodArguments': { 'start': 0., 'stop': 0.2, 'dt': 0.01, 'accuracy': 5., }, }) task.simulation.algorithm.kisao_id = 'KISAO_0000437' with self.assertRaises(NotImplementedError): smoldyn.biosimulators.combine.exec_sed_task(task, variables)
def _build_combine_archive(self): task = Task( id='task', model=Model( id='model', source='bounce1.txt', language=ModelLanguage.Smoldyn.value, ), simulation=UniformTimeCourseSimulation( id='sim', initial_time=0., output_start_time=0.1, output_end_time=0.2, number_of_points=10, algorithm=Algorithm(kisao_id='KISAO_0000057', changes=[ AlgorithmParameterChange( kisao_id='KISAO_0000488', new_value='10'), ])), ) variables = [ Variable(id='time', symbol=Symbol.time.value, task=task), Variable(id='red', target='molcount red', task=task), Variable(id='green', target='molcount green', task=task), ] doc = SedDocument( models=[task.model], simulations=[task.simulation], tasks=[task], data_generators=[ DataGenerator( id='data_gen_time', variables=[ Variable(id='var_time', symbol=Symbol.time.value, task=task) ], math='var_time', ), DataGenerator( id='data_gen_red', variables=[ Variable(id='var_red', target='molcount red', task=task) ], math='var_red', ), DataGenerator( id='data_gen_green', variables=[ Variable(id='var_green', target='molcount green', task=task) ], math='var_green', ), ], ) doc.outputs.append( Report(id='report', data_sets=[ DataSet(id='data_set_time', label='time', data_generator=doc.data_generators[0]), DataSet(id='data_set_red', label='red', data_generator=doc.data_generators[1]), DataSet(id='data_set_green', label='green', data_generator=doc.data_generators[2]), ])) archive_dirname = os.path.join(self.dirname, 'archive') os.makedirs(archive_dirname) shutil.copyfile( os.path.join(self.EXAMPLES_DIRNAME, 'S1_intro', 'bounce1.txt'), os.path.join(archive_dirname, 'bounce1.txt')) sim_filename = os.path.join(archive_dirname, 'sim_1.sedml') SedmlSimulationWriter().run(doc, sim_filename) archive = CombineArchive(contents=[ CombineArchiveContent('bounce1.txt', CombineArchiveContentFormat.Smoldyn.value), CombineArchiveContent('sim_1.sedml', CombineArchiveContentFormat.SED_ML.value), ], ) archive_filename = os.path.join(self.dirname, 'archive.omex') CombineArchiveWriter().run(archive, archive_dirname, archive_filename) return doc, archive_filename
def test_get_parameters_variables_for_simulation(self): params, sims, vars, plots = get_parameters_variables_outputs_for_simulation(self.FIXTURE_FILENAME, None, OneStepSimulation, None) params, sims, vars, plots = get_parameters_variables_outputs_for_simulation( self.FIXTURE_FILENAME, None, UniformTimeCourseSimulation, None) self.assertTrue(params[0].is_equal(ModelAttributeChange( id='value_parameter_k_1', name='Value of parameter "k_1"', target='parameters.k_1.value', new_value='0.0', ))) self.assertTrue(params[7].is_equal(ModelAttributeChange( id='value_parameter_fa', name='Value of parameter "fa"', target='parameters.fa.value', new_value='1E-5', ))) self.assertTrue(params[9].is_equal(ModelAttributeChange( id='initial_amount_species_GeneA_00__', name='Initial amount of species "GeneA_00()"', target='species.GeneA_00().initialCount', new_value='1', ))) self.assertTrue(params[17].is_equal(ModelAttributeChange( id='expression_function_gfunc', name='Expression of function "gfunc()"', target='functions.gfunc.expression', new_value='(0.5*(Atot^2))/(10+(Atot^2))', ))) self.assertEqual(len(sims), 5) self.assertIsInstance(sims[0], UniformTimeCourseSimulation) expected_sim = UniformTimeCourseSimulation( id='simulation_0', initial_time=0., output_start_time=0., output_end_time=1000000., number_of_steps=1000, algorithm=Algorithm( kisao_id='KISAO_0000029', changes=[ AlgorithmParameterChange( kisao_id='KISAO_0000488', new_value='2', ) ] ) ) self.assertTrue(sims[0].is_equal(expected_sim)) self.assertTrue(vars[0].is_equal(Variable( id='time', name='Time', symbol=Symbol.time.value, ))) self.assertTrue(vars[1].is_equal(Variable( id='amount_molecule_A__', name='Dynamics of molecule "A()"', target='molecules.A().count', ))) self.assertTrue(vars[9].is_equal(Variable( id='amount_species_GeneA_00__', name='Dynamics of species "GeneA_00()"', target='species.GeneA_00().count', ))) self.assertEqual(len(vars), 17)
def test_get_parameters_variables_for_simulation_native_data_types(self): params, sims, vars, plots = get_parameters_variables_outputs_for_simulation( self.FIXTURE_FILENAME, None, UniformTimeCourseSimulation, None, native_ids=True, native_data_types=True) self.assertTrue(params[0].is_equal(ModelAttributeChange( id='k_1', name=None, target='parameters.k_1.value', new_value=0.0, ))) self.assertTrue(params[7].is_equal(ModelAttributeChange( id='fa', name=None, target='parameters.fa.value', new_value=1E-5, ))) self.assertTrue(params[9].is_equal(ModelAttributeChange( id='GeneA_00()', name=None, target='species.GeneA_00().initialCount', new_value=1, ))) self.assertTrue(params[17].is_equal(ModelAttributeChange( id='gfunc', name=None, target='functions.gfunc.expression', new_value='(0.5*(Atot^2))/(10+(Atot^2))', ))) self.assertEqual(len(sims), 5) self.assertIsInstance(sims[0], UniformTimeCourseSimulation) expected_sim = UniformTimeCourseSimulation( id='simulation_0', initial_time=0., output_start_time=0., output_end_time=1000000., number_of_steps=1000, algorithm=Algorithm( kisao_id='KISAO_0000029', changes=[ AlgorithmParameterChange( kisao_id='KISAO_0000488', new_value=2, ) ] ) ) self.assertTrue(sims[0].is_equal(expected_sim)) self.assertTrue(vars[0].is_equal(Variable( id=None, name=None, symbol=Symbol.time.value, ))) self.assertTrue(vars[1].is_equal(Variable( id='A()', name=None, target='molecules.A().count', ))) self.assertTrue(vars[9].is_equal(Variable( id='GeneA_00()', name=None, target='species.GeneA_00().count', ))) self.assertEqual(len(vars), 17)
def export_sed_doc(sed_doc_specs): """ Export the specifications of SED-ML document to SED-ML Args: sed_doc_specs (``SedDocument``) Returns: :obj:`SedDocument` """ sed_doc = SedDocument( level=sed_doc_specs['level'], version=sed_doc_specs['version'], ) # add styles to SED-ML document style_id_map = {} for style_spec in sed_doc_specs['styles']: style = Style( id=style_spec.get('id'), name=style_spec.get('name', None), ) sed_doc.styles.append(style) style_id_map[style.id] = style if style_spec.get('line', None) is not None: style.line = LineStyle( type=style_spec['line'].get('type', None), color=style_spec['line'].get('color', None), thickness=style_spec['line'].get('thickness', None), ) if style_spec['line'].get('type', None) is not None: style.line.type = LineStyleType[style_spec['line']['type']] if style_spec['line'].get('color', None) is not None: style.line.color = Color(style_spec['line']['color']) if style_spec.get('marker', None) is not None: style.marker = MarkerStyle( type=style_spec['marker'].get('type', None), size=style_spec['marker'].get('size', None), line_color=style_spec['marker'].get('lineColor', None), line_thickness=style_spec['marker'].get('lineThickness', None), fill_color=style_spec['marker'].get('fillColor', None), ) if style_spec['marker'].get('type', None) is not None: style.marker.type = MarkerStyleType[style_spec['marker'] ['type']] if style_spec['marker'].get('lineColor', None) is not None: style.marker.line_color = Color( style_spec['marker']['lineColor']) if style_spec['marker'].get('fillColor', None) is not None: style.marker.fill_color = Color( style_spec['marker']['fillColor']) if style_spec.get('fill', None) is not None: style.fill = FillStyle(color=style_spec['fill'].get('color', None), ) if style_spec['fill'].get('color', None) is not None: style.fill.color = Color(style_spec['fill']['color']) for style_spec, style in zip(sed_doc_specs['styles'], sed_doc.styles): if style_spec.get('base', None) is not None: style.base = style_id_map.get(style_spec['base'], None) if style.base is None: raise BadRequestException( title='Base style `{}` for style `{}` does not exist'. format(style_spec['base'], style.id), instance=ValueError('Style does not exist'), ) # add models to SED-ML document model_id_map = {} for model_spec in sed_doc_specs['models']: model = Model( id=model_spec.get('id'), name=model_spec.get('name', None), language=model_spec.get('language'), source=model_spec.get('source'), ) sed_doc.models.append(model) model_id_map[model.id] = model for change_spec in model_spec['changes']: if change_spec['_type'] == 'SedModelAttributeChange': change = ModelAttributeChange( new_value=change_spec.get('newValue'), ) elif change_spec['_type'] == 'SedAddElementModelChange': change = AddElementModelChange( new_elements=change_spec.get('newElements'), ) elif change_spec['_type'] == 'SedReplaceElementModelChange': change = ReplaceElementModelChange( new_elements=change_spec.get('newElements'), ) elif change_spec['_type'] == 'SedRemoveElementModelChange': change = RemoveElementModelChange() elif change_spec['_type'] == 'SedComputeModelChange': change = ComputeModelChange( parameters=[], variables=[], math=change_spec.get('math'), ) for parameter_spec in change_spec.get('parameters', []): change.parameters.append( Parameter( id=parameter_spec.get('id'), name=parameter_spec.get('name', None), value=parameter_spec.get('value'), )) for variable_spec in change_spec.get('variables', []): change.variables.append( Variable( id=variable_spec.get('id'), name=variable_spec.get('name', None), model=variable_spec.get('model', None), target=variable_spec.get('target', {}).get('value', None), target_namespaces={ namespace['prefix']: namespace['uri'] for namespace in variable_spec.get( 'target', {}).get('namespaces', []) }, symbol=variable_spec.get('symbol', None), task=variable_spec.get('task', None), )) else: raise BadRequestException( title='Changes of type `{}` are not supported'.format( change_spec['_type']), instance=NotImplementedError('Invalid change')) change.target = change_spec.get('target').get('value') for ns in change_spec.get('target').get('namespaces', []): change.target_namespaces[ns.get('prefix', None)] = ns['uri'] model.changes.append(change) # add simulations to SED-ML document simulation_id_map = {} for sim_spec in sed_doc_specs['simulations']: if sim_spec['_type'] == 'SedOneStepSimulation': sim = OneStepSimulation( id=sim_spec.get('id'), name=sim_spec.get('name', None), step=sim_spec.get('step'), ) elif sim_spec['_type'] == 'SedSteadyStateSimulation': sim = SteadyStateSimulation( id=sim_spec.get('id'), name=sim_spec.get('name', None), ) elif sim_spec['_type'] == 'SedUniformTimeCourseSimulation': sim = UniformTimeCourseSimulation( id=sim_spec.get('id'), name=sim_spec.get('name', None), initial_time=sim_spec.get('initialTime'), output_start_time=sim_spec.get('outputStartTime'), output_end_time=sim_spec.get('outputEndTime'), number_of_steps=sim_spec.get('numberOfSteps'), ) else: raise BadRequestException( title='Simulations of type `{}` are not supported'.format( sim_spec['_type']), instance=NotImplementedError('Invalid simulation') ) # pragma: no cover: unreachable due to schema validation alg_spec = sim_spec.get('algorithm') sim.algorithm = Algorithm(kisao_id=alg_spec.get('kisaoId')) for change_spec in alg_spec.get('changes'): sim.algorithm.changes.append( AlgorithmParameterChange( kisao_id=change_spec.get('kisaoId'), new_value=change_spec.get('newValue'), )) sed_doc.simulations.append(sim) simulation_id_map[sim.id] = sim # add tasks to SED-ML document task_id_map = {} for task_spec in sed_doc_specs['tasks']: if task_spec['_type'] == 'SedTask': model_id = task_spec.get('model') sim_id = task_spec.get('simulation') model = model_id_map.get(model_id, None) sim = simulation_id_map.get(sim_id, None) if not model: raise BadRequestException( title='Model `{}` for task `{}` does not exist'.format( model_id, task_spec.get('id')), instance=ValueError('Model does not exist'), ) if not sim: raise BadRequestException( title='Simulation `{}` for task `{}` does not exist'. format(sim_id, task_spec.get('id')), instance=ValueError('Simulation does not exist'), ) task = Task( id=task_spec.get('id'), name=task_spec.get('name', None), model=model, simulation=sim, ) else: # TODO: support repeated tasks raise BadRequestException( title='Tasks of type `{}` are not supported'.format( task_spec['_type']), instance=NotImplementedError('Invalid task') ) # pragma: no cover: unreachable due to schema validation sed_doc.tasks.append(task) task_id_map[task.id] = task # add data generators to SED-ML document data_gen_id_map = {} for data_gen_spec in sed_doc_specs['dataGenerators']: data_gen = DataGenerator( id=data_gen_spec.get('id'), name=data_gen_spec.get('name', None), math=data_gen_spec.get('math'), ) for var_spec in data_gen_spec['variables']: task_id = var_spec.get('task') task = task_id_map.get(task_id, None) if not task: raise BadRequestException( title='Task `{}` for variable `{}` does not exist'.format( task_id, var_spec.get('id')), instance=ValueError('Task does not exist'), ) var = Variable( id=var_spec.get('id'), name=var_spec.get('name', None), task=task, symbol=var_spec.get('symbol', None), ) target_spec = var_spec.get('target', None) if target_spec: var.target = target_spec['value'] for ns in target_spec.get('namespaces', []): var.target_namespaces[ns.get('prefix', None)] = ns['uri'] data_gen.variables.append(var) sed_doc.data_generators.append(data_gen) data_gen_id_map[data_gen.id] = data_gen # add outputs to SED-ML document for output_spec in sed_doc_specs['outputs']: if output_spec['_type'] == 'SedReport': output = Report( id=output_spec.get('id'), name=output_spec.get('name', None), ) for data_set_spec in output_spec['dataSets']: data_gen_id = data_set_spec['dataGenerator'] data_gen = data_gen_id_map.get(data_gen_id, None) if not data_gen: raise BadRequestException( title= 'Data generator `{}` for output `{}` does not exist'. format(data_gen_id, output_spec.get('id')), instance=ValueError('Data generator does not exist'), ) data_set = DataSet( id=data_set_spec.get('id'), name=data_set_spec.get('name', None), label=data_set_spec.get('label', None), data_generator=data_gen, ) output.data_sets.append(data_set) elif output_spec['_type'] == 'SedPlot2D': output = Plot2D( id=output_spec.get('id'), name=output_spec.get('name', None), ) for curve_spec in output_spec['curves']: x_data_gen_id = curve_spec['xDataGenerator'] y_data_gen_id = curve_spec['yDataGenerator'] style_id = curve_spec.get('style', None) x_data_gen = data_gen_id_map.get(x_data_gen_id, None) y_data_gen = data_gen_id_map.get(y_data_gen_id, None) style = style_id_map.get(style_id, None) if not x_data_gen: raise BadRequestException( title= 'X data generator `{}` for curve `{}` does not exist'. format(x_data_gen_id, output_spec.get('id')), instance=ValueError('Data generator does not exist'), ) if not y_data_gen: raise BadRequestException( title= 'Y data generator `{}` for curve `{}` does not exist'. format(y_data_gen_id, output_spec.get('id')), instance=ValueError('Data generator does not exist'), ) if style_id is not None and style is None: raise BadRequestException( title='Style `{}` for curve `{}` does not exist'. format(style_id, output_spec.get('id')), instance=ValueError('Style does not exist'), ) curve = Curve( id=curve_spec.get('id'), name=curve_spec.get('name', None), x_data_generator=x_data_gen, y_data_generator=y_data_gen, x_scale=AxisScale[output_spec['xScale']], y_scale=AxisScale[output_spec['yScale']], style=style, ) output.curves.append(curve) elif output_spec['_type'] == 'SedPlot3D': output = Plot3D( id=output_spec.get('id'), name=output_spec.get('name', None), ) for surface_spec in output_spec['surfaces']: x_data_gen_id = surface_spec['xDataGenerator'] y_data_gen_id = surface_spec['yDataGenerator'] z_data_gen_id = surface_spec['zDataGenerator'] style_id = surface_spec.get('style', None) x_data_gen = data_gen_id_map.get(x_data_gen_id, None) y_data_gen = data_gen_id_map.get(y_data_gen_id, None) z_data_gen = data_gen_id_map.get(z_data_gen_id, None) style = style_id_map.get(style_id, None) if not x_data_gen: raise BadRequestException( title= 'X data generator `{}` for surface `{}` does not exist' .format(x_data_gen_id, output_spec.get('id')), instance=ValueError('Data generator does not exist'), ) if not y_data_gen: raise BadRequestException( title= 'Y data generator `{}` for surface `{}` does not exist' .format(y_data_gen_id, output_spec.get('id')), instance=ValueError('Data generator does not exist'), ) if not z_data_gen: raise BadRequestException( title= 'X data generator `{}` for surface `{}` does not exist' .format(z_data_gen_id, output_spec.get('id')), instance=ValueError('Data generator does not exist'), ) if style_id is not None and style is None: raise BadRequestException( title='Style `{}` for surface `{}` does not exist'. format(style_id, output_spec.get('id')), instance=ValueError('Style does not exist'), ) surface = Surface( id=surface_spec.get('id'), name=surface_spec.get('name', None), x_data_generator=x_data_gen, y_data_generator=y_data_gen, z_data_generator=z_data_gen, x_scale=AxisScale[output_spec['xScale']], y_scale=AxisScale[output_spec['yScale']], z_scale=AxisScale[output_spec['zScale']], style=style, ) output.surfaces.append(surface) else: raise BadRequestException( title='Outputs of type `{}` are not supported'.format( output_spec['_type']), instance=NotImplementedError('Invalid output') ) # pragma: no cover: unreachable due to schema validation sed_doc.outputs.append(output) # deserialize references model_map = {} for model in sed_doc.models: model_map[model.id] = model task_map = {} for task in sed_doc.tasks: task_map[task.id] = task for model in sed_doc.models: for change in model.changes: if isinstance(change, ComputeModelChange): for variable in change.variables: if variable.model: variable.model = model_map[variable.model] if variable.task: variable.task = task_map[variable.task] return sed_doc