예제 #1
0
def createTxState(tx_in: TxInput, pubkey_left: PublicKey, pubkey_right: PublicKey,
                  pubkey_pay_right: PublicKey,
                  pubkey_mulsig_left: PublicKey, pubkey_mulsig_right: PublicKey,
                  lock_val: float, left_val: float, right_val: float, T: int, delta: int) -> Transaction:

    """
    Move coins from left user balance to a new "lock" output.
    Before: 'a' coins to L, 'b' coins to R.
    After: 'a - c' coins to L, 'b' coins to R, 'c' coins locked.

    :param tx_in: reference to channel open transaction
    :param pubkey_left: public key owned by left user to receive his coins from channel
    :param pubkey_right: public key owned by right user to receive his coins from channel
    :param pubkey_pay_right: public key owned by right user for payment after time T
    :param pubkey_mulsig_left: public key owned by left user for refund if enable-refund tx is published
    :param pubkey_mulsig_right: public key owned by right user for refund if enable-refund tx is published
    :param lock_val: amount of coins to lock: 'c'
    :param left_val: coins or left user: '******'
    :param right_val: coins or right user: '******'
    :param T: locked funds can pe paid after this time wherever right user wants
    :param delta: upper bound on time for transaction to be confirmed by the network
    :return: tx_state
    """

    out_lock_script = getTxStateLockScript(T, delta, pubkey_pay_right, pubkey_mulsig_left, pubkey_mulsig_right)

    tx_out_lock = TxOutput(lock_val, out_lock_script)
    tx_out_left = TxOutput(left_val, P2pkhAddress(pubkey_left.get_address().to_string()).to_script_pub_key())
    tx_out_right = TxOutput(right_val, P2pkhAddress(pubkey_right.get_address().to_string()).to_script_pub_key())

    tx = Transaction([tx_in], [tx_out_lock, tx_out_left, tx_out_right])

    return tx
예제 #2
0
    def setUp(self):
        setup('testnet')
        self.txin = TxInput(
            "76464c2b9e2af4d63ef38a77964b3b77e629dddefc5cb9eb1a3645b1608b790f",
            0)
        self.from_addr = P2pkhAddress('n4bkvTyU1dVdzsrhWBqBw8fEMbHjJvtmJR')
        self.sk = PrivateKey(
            'cTALNpTpRbbxTCJ2A5Vq88UxT44w1PE2cYqiB3n4hRvzyCev1Wwo')
        self.p2pk_sk = PrivateKey(
            'cRvyLwCPLU88jsyj94L7iJjQX5C2f8koG4G2gevN4BeSGcEvfKe9')
        self.p2pk_redeem_script = Script(
            [self.p2pk_sk.get_public_key().to_hex(), 'OP_CHECKSIG'])
        self.txout = TxOutput(to_satoshis(0.09),
                              self.p2pk_redeem_script.to_p2sh_script_pub_key())
        self.create_p2sh_and_send_result = '02000000010f798b60b145361aebb95cfcdedd29e6773b4b96778af33ed6f42a9e2b4c4676000000006b483045022100fd3a3fd4aeec5db0f3f9c5c5ef7f60f37920be7464a80edacbc3b6b9d0624173022031ce309330e60b19d39cec8c5597460c840adcdd66f7dbbf896eef3ec42b472f012102d82c9860e36f15d7b72aa59e29347f951277c21cd4d34822acdeeadbcff8a546ffffffff01405489000000000017a9142910fc0b1b7ab6c9789c5a67c22c5bcde5b903908700000000'

        self.txin_spend = TxInput(
            '7db363d5a7fabb64ccce154e906588f1936f34481223ea8c1f2c935b0a0c945b',
            0)
        # self.p2pk_sk , self.p2pk_redeem_script from above
        self.to_addr = self.from_addr
        self.txout2 = TxOutput(to_satoshis(0.08),
                               self.to_addr.to_script_pub_key())
        self.spend_p2sh_result = '02000000015b940c0a5b932c1f8cea231248346f93f18865904e15cecc64bbfaa7d563b37d000000006c47304402204984c2089bf55d5e24851520ea43c431b0d79f90d464359899f27fb40a11fbd302201cc2099bfdc18c3a412afb2ef1625abad8a2c6b6ae0bf35887b787269a6f2d4d01232103a2fef1829e0742b89c218c51898d9e7cb9d51201ba2bf9d9e9214ebb6af32708acffffffff0100127a00000000001976a914fd337ad3bf81e086d96a68e1f8d6a0a510f8c24a88ac00000000'

        # P2SH(CSV+P2PKH)
        self.sk_csv_p2pkh = PrivateKey(
            'cRvyLwCPLU88jsyj94L7iJjQX5C2f8koG4G2gevN4BeSGcEvfKe9')
        self.seq = Sequence(TYPE_RELATIVE_TIMELOCK, 200)
        self.txin_seq = TxInput(
            'f557c623e55f0affc696b742630770df2342c4aac395e0ed470923247bc51b95',
            0,
            sequence=self.seq.for_input_sequence())
        self.another_addr = P2pkhAddress('n4bkvTyU1dVdzsrhWBqBw8fEMbHjJvtmJR')
        self.spend_p2sh_csv_p2pkh_result = '0200000001951bc57b24230947ede095c3aac44223df70076342b796c6ff0a5fe523c657f5000000008a483045022100c123775e69ec27094f7940facb9ad769c09f48a7fc88250a2fce67bd92c9b4cf02204ebdbed84af46e584fe6db9a23c420b7370879e883b555e119465f84bf34d82f012103a2fef1829e0742b89c218c51898d9e7cb9d51201ba2bf9d9e9214ebb6af327081e02c800b27576a914c3f8e5b0f8455a2b02c29c4488a550278209b66988acc80000000100ab9041000000001976a914fd337ad3bf81e086d96a68e1f8d6a0a510f8c24a88ac00000000'
예제 #3
0
def main():
    # always remember to setup the network
    setup('testnet')

    # create transaction input from tx id of UTXO (contained 0.4 tBTC)
    txin = TxInput(
        'fb48f4e23bf6ddf606714141ac78c3e921c8c0bebeb7c8abb2c799e9ff96ce6c', 0)

    # create transaction output using P2PKH scriptPubKey (locking script)
    addr = P2pkhAddress('n4bkvTyU1dVdzsrhWBqBw8fEMbHjJvtmJR')
    txout = TxOutput(
        Decimal('0.1'),
        Script([
            'OP_DUP', 'OP_HASH160',
            addr.to_hash160(), 'OP_EQUALVERIFY', 'OP_CHECKSIG'
        ]))

    # create another output to get the change - remaining 0.01 is tx fees
    # note that this time we used to_script_pub_key() to create the P2PKH
    # script
    change_addr = P2pkhAddress('mmYNBho9BWQB2dSniP1NJvnPoj5EVWw89w')
    change_txout = TxOutput(Decimal('0.29'), change_addr.to_script_pub_key())
    #change_txout = TxOutput(Decimal('0.29'), Script(['OP_DUP', 'OP_HASH160',
    #                                     change_addr.to_hash160(),
    #                                     'OP_EQUALVERIFY', 'OP_CHECKSIG']))

    # create transaction from inputs/outputs -- default locktime is used
    tx = Transaction([txin], [txout, change_txout])

    # print raw transaction
    print("\nRaw unsigned transaction:\n" + tx.serialize())

    # use the private key corresponding to the address that contains the
    # UTXO we are trying to spend to sign the input
    sk = PrivateKey('cRvyLwCPLU88jsyj94L7iJjQX5C2f8koG4G2gevN4BeSGcEvfKe9')

    # note that we pass the scriptPubkey as one of the inputs of sign_input
    # because it is used to replace the scriptSig of the UTXO we are trying to
    # spend when creating the transaction digest
    from_addr = P2pkhAddress('myPAE9HwPeKHh8FjKwBNBaHnemApo3dw6e')
    sig = sk.sign_input(
        tx, 0,
        Script([
            'OP_DUP', 'OP_HASH160',
            from_addr.to_hash160(), 'OP_EQUALVERIFY', 'OP_CHECKSIG'
        ]))
    #print(sig)

    # get public key as hex
    pk = sk.get_public_key()
    pk = pk.to_hex()
    #print (pk)

    # set the scriptSig (unlocking script)
    txin.script_sig = Script([sig, pk])
    signed_tx = tx.serialize()

    # print raw signed transaction ready to be broadcasted
    print("\nRaw signed transaction:\n" + signed_tx)
def btc_payment(source_address, outputs, fee_satoshi_kb, network='mainnet'):
    try:
        setup(network)
        outputs_list = []
        p2sh_num = 0
        p2pkh_num = 0
        total_amount_to_spend = _calculate_total_amount(outputs)
        print(total_amount_to_spend)
        txin = []
        utxo_amount = 0

        for address, value in outputs.items():
            addr_type = _check_address_type(address)
            addr = ''
            if addr_type is P2PKH_ADDRESS:
                addr = P2pkhAddress(address)
                txout = TxOutput(
                    Decimal(value) / Decimal(SATOSHIS_PER_BITCOIN),
                    Script([
                        'OP_DUP', 'OP_HASH160',
                        addr.to_hash160(), 'OP_EQUALVERIFY', 'OP_CHECKSIG'
                    ]))
                outputs_list.append(txout)
                p2pkh_num += 1
            elif addr_type is P2SH_ADDRESS:
                addr = P2shAddress(address)
                txout = TxOutput(
                    Decimal(value) / Decimal(SATOSHIS_PER_BITCOIN),
                    Script(['OP_HASH160',
                            addr.to_hash160(), 'OP_EQUAL']))
                outputs_list.append(txout)
                p2sh_num += 1

        utxo_set, fee = _get_unspent_transactions(source_address,
                                                  total_amount_to_spend,
                                                  p2pkh_num, p2sh_num,
                                                  fee_satoshi_kb)

        for utxo in utxo_set:
            txin.append(TxInput(utxo['txid'], utxo['vout']))
            utxo_amount += utxo['amount']

        change = utxo_amount - fee - total_amount_to_spend
        change_addr = P2pkhAddress(source_address)
        change_txout = TxOutput(
            Decimal(change) / Decimal(SATOSHIS_PER_BITCOIN),
            Script([
                'OP_DUP', 'OP_HASH160',
                change_addr.to_hash160(), 'OP_EQUALVERIFY', 'OP_CHECKSIG'
            ]))
        outputs_list.append(change_txout)
        tx = Transaction(txin, outputs_list)

        return tx.serialize(), utxo_set
    except UnspentTransactionsError:
        raise UnspentTransactionsError
    except:
        raise BtcPaymentError("Problem during creation of raw transaction")
def main():
    # always remember to setup the network
    setup('testnet')  # same params as regest, which the node should run

    # create transaction input from tx id of UTXO (contained 0.4 tBTC)
    txin = TxInput(
        'e2d08a63a540000222d6a92440436375d8b1bc89a2638dc5366833804287c83f', 1)

    # create transaction output using P2PKH scriptPubKey (locking script)
    addr = P2pkhAddress('msXP94TBncQ9usP6oZNpGweE24biWjJs2d')
    # locking script expects 2 numbers that when added equal 5 (silly example)
    txout = TxOutput(0.9, Script(['OP_ADD', 'OP_5', 'OP_EQUAL']))

    # create another output to get the change - remaining 0.01 is tx fees
    # note that this time we used to_script_pub_key() to create the P2PKH
    # script
    change_addr = P2pkhAddress('mrCDrCybB6J1vRfbwM5hemdJz73FwDBC8r')
    change_txout = TxOutput(2, change_addr.to_script_pub_key())

    # create transaction from inputs/outputs -- default locktime is used
    tx = Transaction([txin], [txout, change_txout])

    # print raw transaction
    print("\nRaw unsigned transaction:\n" + tx.serialize())

    # use the private key corresponding to the address that contains the
    # UTXO we are trying to spend to sign the input
    sk = PrivateKey('cMahea7zqjxrtgAbB7LSGbcQUr1uX1ojuat9jZodMN87JcbXMTcA')

    # note that we pass the scriptPubkey as one of the inputs of sign_input
    # because it is used to replace the scriptSig of the UTXO we are trying to
    # spend when creating the transaction digest
    from_addr = P2pkhAddress('mrCDrCybB6J1vRfbwM5hemdJz73FwDBC8r')
    sig = sk.sign_input(
        tx, 0,
        Script([
            'OP_DUP', 'OP_HASH160',
            from_addr.to_hash160(), 'OP_EQUALVERIFY', 'OP_CHECKSIG'
        ]))
    #print(sig)

    # get public key as hex
    pk = sk.get_public_key()
    pk = pk.to_hex()
    #print (pk)

    # set the scriptSig (unlocking script)
    txin.script_sig = Script([sig, pk])
    signed_tx = tx.serialize()

    # print raw signed transaction ready to be broadcasted
    print("\nRaw signed transaction:\n" + signed_tx)
def main():
    # always remember to setup the network
    setup('testnet')

    # send 2 P2PKH inputs to 1 P2WPKH output

    # create transaction inputs from tx ids of UTXOs (contained 0.002 tBTC)
    txin = TxInput('eddfaa3d5a1c9a2a2961638aa4e28871b09ed9620f9077482248f368d46d8205', 1)
    txin2 = TxInput('cf4b2987c06b9dd2ba6770af31a4942a4ea3e7194c0d64e8699e9fda03f50551', 1)

    # create transaction output using P2WPKH scriptPubKey (locking script)
    addr = P2wpkhAddress('tb1qlffsz7cgzmyzhklleu97afru7vwjytux4z4zsl')
    txout = TxOutput(to_satoshis(0.0019), addr.to_script_pub_key())
    #txout = TxOutput(to_satoshis(0.0019), Script([0, addr.to_hash()]) )

    # create transaction from inputs/outputs -- default locktime is used
    # note that this is not a segwit transaction since we don't spend segwit
    tx = Transaction([txin, txin2], [txout]) #, has_segwit=True)

    # print raw transaction
    print("\nRaw unsigned transaction:\n" + tx.serialize())

    # use the private keys corresponding to the address that contains the
    # UTXOs we are trying to spend to sign the input
    sk = PrivateKey('cTALNpTpRbbxTCJ2A5Vq88UxT44w1PE2cYqiB3n4hRvzyCev1Wwo')
    sk2 = PrivateKey('cVf3kGh6552jU2rLaKwXTKq5APHPoZqCP4GQzQirWGHFoHQ9rEVt')

    # note that we pass the scriptPubkey as one of the inputs of sign_input
    # because it is used to replace the scriptSig of the UTXO we are trying to
    # spend when creating the transaction digest
    from_addr = P2pkhAddress('n4bkvTyU1dVdzsrhWBqBw8fEMbHjJvtmJR')
    sig = sk.sign_input( tx, 0, Script(['OP_DUP', 'OP_HASH160',
                                       from_addr.to_hash160(), 'OP_EQUALVERIFY',
                                       'OP_CHECKSIG']) )
    from_addr2 = P2pkhAddress('mmYNBho9BWQB2dSniP1NJvnPoj5EVWw89w')
    sig2 = sk2.sign_input( tx, 1, from_addr2.to_script_pub_key() )

    # get public key as hex
    pk = sk.get_public_key().to_hex()
    pk2 = sk2.get_public_key().to_hex()

    # set the scriptSig (unlocking script)
    txin.script_sig = Script([sig, pk])
    txin2.script_sig = Script([sig2, pk2])
    signed_tx = tx.serialize()

    # print raw signed transaction ready to be broadcasted
    print("\nRaw signed transaction:\n" + signed_tx)
예제 #7
0
def send_to_p2wpkh(amount_to_send, fee):
    transaction = Transaction([], [])
    addr = BOB.public_key.get_segwit_address()
    from_addr = P2pkhAddress(BOB.public_key.get_address().to_string())
    print(from_addr.to_hash160())
    for i in range(len(utxos)):
        txin = TxInput(utxos[i][0], utxos[i][1])
        # sk = PrivateKey('cTALNpTpRbbxTCJ2A5Vq88UxT44w1PE2cYqiB3n4hRvzyCev1Wwo')
        # print(sk.get_public_key().get_address().to_string())
        # print(alice_public_key_BTC.get_address().to_string())
        transaction.inputs.append(txin)
    for i in range(0, 10):
        txout = TxOutput(to_satoshis((amount_to_send - fee) / 10),
                         addr.to_script_pub_key())
        transaction.outputs.append(txout)
        # txout = TxOutput(to_satoshis(0.425/2), POOL.p2pkh_script_pubkey("btc-test3"))
        # transaction.outputs.append(txout)
    for i in range(len(utxos)):
        sig = BOB.secret_key.sign_input(
            transaction, i,
            Script([
                'OP_DUP', 'OP_HASH160',
                from_addr.to_hash160(), 'OP_EQUALVERIFY', 'OP_CHECKSIG'
            ]))
        transaction.inputs[i].script_sig = Script([
            sig, BOB.public_key.to_hex()
        ])  # , BOB.p2pkh_script_pubkey().to_hex()])
        # transaction = Transaction([txin], [txout])

    # print(txin.script_sig.to_bytes())
    return transaction
예제 #8
0
 def test_send_to_non_std(self):
     tx = Transaction([self.txin], [self.txout, self.change_txout])
     from_addr = P2pkhAddress('mrCDrCybB6J1vRfbwM5hemdJz73FwDBC8r')
     sig = self.sk.sign_input(tx, 0, from_addr.to_script_pub_key())
     pk = self.sk.get_public_key().to_hex()
     self.txin.script_sig = Script([sig, pk])
     self.assertEqual(tx.serialize(), self.create_non_std_tx_result)
예제 #9
0
def create_spending_signed_trx(p2pkh_addr_to_str, priv_key_from_obj):
    """
    Gather related data and generate
    the single transation that transfers the btc value of the
    found UTXO transactions.

    """

    p2pkh_addr_to_obj = P2pkhAddress(p2pkh_addr_to_str)

    seq_number_in_hex = Common.get_seq_hex_from_conf(
        Common.get_relative_time_seconds_blocks())

    redeem_script = Common.get_redeem_script_from_conf(
        get_redeem_pub_key_obj())

    p2sh_paid_to_addr = P2shAddress.from_script(redeem_script).to_address()

    utxo_results = get_input_trx_from_utxo(priv_key_from_obj,
                                           p2sh_paid_to_addr, seq_number_in_hex, redeem_script)

    # No sense in creating a transaction with 0 UTXOs
    if utxo_results[0] > 0 and len(utxo_results[1]) > 0:

        signed_tx = get_signed_trx(utxo_results, p2pkh_addr_to_obj,
                                   priv_key_from_obj, redeem_script)

        # print raw signed transaction ready to be broadcasted
        print("\nSigned raw transaction:\n" + signed_tx)

        trasmit_finalized_trx(signed_tx)

    else:
        print("\nNo UTXOs found. Nothing to do!\n")
예제 #10
0
    def setUp(self):
        setup('testnet')
        # values for testing create non std tx
        self.txin = TxInput("e2d08a63a540000222d6a92440436375d8b1bc89a2638dc5366833804287c83f", 1)
        self.to_addr = P2pkhAddress('msXP94TBncQ9usP6oZNpGweE24biWjJs2d')
        self.sk = PrivateKey('cMahea7zqjxrtgAbB7LSGbcQUr1uX1ojuat9jZodMN87JcbXMTcA')
        self.txout = TxOutput( 0.9, Script(['OP_ADD', 'OP_5', 'OP_EQUAL']) )
        self.change_addr = P2pkhAddress('mrCDrCybB6J1vRfbwM5hemdJz73FwDBC8r')
        self.change_txout = TxOutput( 2, self.change_addr.to_script_pub_key())
        self.create_non_std_tx_result = '02000000013fc8874280336836c58d63a289bcb1d87563434024a9d622020040a5638ad0e2010000006a47304402201febc032331342baaece4b88c7ab42d7148c586b9a48944cbebde95636ac7424022018f0911a4ba664ac8cc21457a58e3a1214ba92b84cb60e57f4119fe655b3a78901210279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798ffffffff02804a5d05000000000393558700c2eb0b000000001976a914751e76e8199196d454941c45d1b3a323f1433bd688ac00000000'

        # values for testing create non std tx
        self.txin_spend = TxInput("4d9a6baf45d4b57c875fe83d5e0834568eae4b5ef6e61d13720ef6685168e663", 0)
        self.txin_spend.script_sig = Script(['OP_2', 'OP_3'])
        self.txout_spend = TxOutput( 0.8, self.change_addr.to_script_pub_key())
        self.spend_non_std_tx_result = '020000000163e6685168f60e72131de6f65e4bae8e5634085e3de85f877cb5d445af6b9a4d00000000025253ffffffff0100b4c404000000001976a914751e76e8199196d454941c45d1b3a323f1433bd688ac00000000'
예제 #11
0
def get_function2_p2pkh_addr_to_from_conf(function2_conf_section):

    p2pkh_addr_to_str = Common.get_config_value(function2_conf_section,
                                                'P2PKH_Addr')
    p2pkh_addr_to = P2pkhAddress(p2pkh_addr_to_str)

    return p2pkh_addr_to
예제 #12
0
def main():
    # always remember to setup the network
    setup('testnet')

    #
    # This script creates a P2SH address containing a P2PK script and sends
    # some funds to it
    #

    # create transaction input from tx id of UTXO (contained 0.1 tBTC)
    txin = TxInput(
        '76464c2b9e2af4d63ef38a77964b3b77e629dddefc5cb9eb1a3645b1608b790f', 0)

    # address we are spending from
    from_addr = P2pkhAddress('n4bkvTyU1dVdzsrhWBqBw8fEMbHjJvtmJR')

    # secret key of address that we are trying to spent
    sk = PrivateKey('cTALNpTpRbbxTCJ2A5Vq88UxT44w1PE2cYqiB3n4hRvzyCev1Wwo')

    #
    # create transaction output using P2SH scriptPubKey (locking script)
    # (the recipient will give us the final address  but for now we create it
    # for demonstration purposes)
    #

    # secret key corresponding to the pubkey needed for the P2SH (P2PK) transaction
    p2pk_sk = PrivateKey(
        'cRvyLwCPLU88jsyj94L7iJjQX5C2f8koG4G2gevN4BeSGcEvfKe9')
    p2pk_pk = p2pk_sk.get_public_key().to_hex()
    redeem_script = Script([p2pk_pk, 'OP_CHECKSIG'])
    txout = TxOutput(Decimal('0.09'), redeem_script.to_p2sh_script_pub_key())

    # no change address - the remaining 0.01 tBTC will go to miners)

    # create transaction from inputs/outputs -- default locktime is used
    tx = Transaction([txin], [txout])

    # print raw transaction
    print("\nRaw unsigned transaction:\n" + tx.serialize())

    # use the private key corresponding to the address that contains the
    # UTXO we are trying to spend to create the signature for the txin
    sig = sk.sign_input(tx, 0, from_addr.to_script_pub_key())
    #print(sig)

    # get public key as hex
    pk = sk.get_public_key()
    pk = pk.to_hex()
    #print (pk)

    # set the scriptSig (unlocking script)
    txin.script_sig = Script([sig, pk])
    signed_tx = tx.serialize()

    # print raw signed transaction ready to be broadcasted
    print("\nRaw signed transaction:\n" + signed_tx)
    print("\nTxId:", tx.get_txid())
예제 #13
0
def main():
    # always remember to setup the network
    setup('testnet')

    # create transaction input from tx id of UTXO (contained 0.4 tBTC)
    txin = TxInput(
        '41c0c1b9aff5d2608a00dd458120b86b38b26a19bb80a4085e0e868e4be0941a', 0)

    # create transaction output using P2PKH scriptPubKey (locking scrip
    addr = P2pkhAddress('2NCpHygg5xJ4FJr3p8gpEzyZtX6R8JxNbZF')
예제 #14
0
    def _tx_encf(self, vk_p, ct_c, sk_u, txin_id, txin_index):
        # create transaction input from tx id of UTXO
        txin = TxInput(txin_id, txin_index)

        # having the vk_p from the shared key generate the corresponding address for decoder to use to respond
        vk_p = PublicKey(vk_p)
        addr_p = vk_p.get_address().to_string()

        # create transaction output using P2PKH scriptPubKey for paying address
        paying_addr = P2pkhAddress(addr_p)
        paying_txout = TxOutput(0.00002, paying_addr.to_script_pub_key())

        # create an output where the address is the ciphertext
        cipher_txout = TxOutput(0.00001,
                                Script(['OP_HASH160', ct_c, 'OP_EQUAL']))

        # create transaction from inputs/outputs -- default locktime is used
        tx = Transaction([txin], [paying_txout, cipher_txout])
        #print("\nRaw unsigned transaction:\n" + tx.serialize())

        # use private key corresponding to the address that contains the UTXO we are trying to spend to sign the input
        vk_u = sk_u.get_public_key()
        addr_u = vk_u.get_address().to_string()

        # note that we pass the scriptPubkey as one of the inputs of sign_input because it is used to replace
        # the scriptSig of the UTXO we are trying to spend when creating the transaction digest
        from_addr = P2pkhAddress(addr_u)
        sig = sk_u.sign_input(
            tx, 0,
            from_addr.to_script_pub_key())  # 0 is for the index of the input

        # set the scriptSig (unlocking script)
        vk_u = vk_u.to_hex()
        txin.script_sig = Script([sig, vk_u])
        signed_tx = tx.serialize()

        print("Users input address: ", addr_u)
        print("Decoder paying address: ", addr_p)
        print("\nRaw signed transaction:\n" + signed_tx)

        return signed_tx
예제 #15
0
def revoke_address(conf, interactive=False):

    # initialize full node connection
    if(conf.testnet):
        setup('testnet')
    else:
        setup('mainnet')

    address = P2pkhAddress(conf.issuing_address).to_hash160()
    op_return_bstring = cred_protocol.revoke_address_cmd(address)
    revoked_txid = publish_hash.issue_op_return(conf, op_return_bstring)
    if interactive:
        print('\nTx hash: {}'.format(revoked_txid))
    else:
        return revoked_txid
    def setUp(self):
        setup('testnet')
        # values for testing unsigned tx, signed tx all, signed tx with low s,
        # sighash none
        self.txin = TxInput('fb48f4e23bf6ddf606714141ac78c3e921c8c0bebeb7c8abb2c799e9ff96ce6c', 0)
        self.addr = P2pkhAddress('n4bkvTyU1dVdzsrhWBqBw8fEMbHjJvtmJR')
        self.txout = TxOutput(Decimal('0.1'), Script(['OP_DUP', 'OP_HASH160', self.addr.to_hash160(),
                                           'OP_EQUALVERIFY', 'OP_CHECKSIG']) )
        self.change_addr = P2pkhAddress('mytmhndz4UbEMeoSZorXXrLpPfeoFUDzEp')
        self.change_txout = TxOutput(Decimal('0.29'), self.change_addr.to_script_pub_key())
        self.change_low_s_addr = P2pkhAddress('mmYNBho9BWQB2dSniP1NJvnPoj5EVWw89w')
        self.change_low_s_txout = TxOutput(Decimal('0.29'), self.change_low_s_addr.to_script_pub_key())
        self.sk = PrivateKey('cRvyLwCPLU88jsyj94L7iJjQX5C2f8koG4G2gevN4BeSGcEvfKe9')
        self.from_addr = P2pkhAddress('myPAE9HwPeKHh8FjKwBNBaHnemApo3dw6e')

        self.core_tx_result = '02000000016cce96ffe999c7b2abc8b7bebec0c821e9c378ac41417106f6ddf63be2f448fb0000000000ffffffff0280969800000000001976a914fd337ad3bf81e086d96a68e1f8d6a0a510f8c24a88ac4081ba01000000001976a914c992931350c9ba48538003706953831402ea34ea88ac00000000'
        self.core_tx_signed_result = '02000000016cce96ffe999c7b2abc8b7bebec0c821e9c378ac41417106f6ddf63be2f448fb000000006a473044022079dad1afef077fa36dcd3488708dd05ef37888ef550b45eb00cdb04ba3fc980e02207a19f6261e69b604a92e2bffdf6ddbed0c64f55d5003e9dfb58b874b07aef3d7012103a2fef1829e0742b89c218c51898d9e7cb9d51201ba2bf9d9e9214ebb6af32708ffffffff0280969800000000001976a914fd337ad3bf81e086d96a68e1f8d6a0a510f8c24a88ac4081ba01000000001976a914c992931350c9ba48538003706953831402ea34ea88ac00000000'
        self.core_tx_signed_low_s_SIGALL_result = '02000000016cce96ffe999c7b2abc8b7bebec0c821e9c378ac41417106f6ddf63be2f448fb000000006a473044022044ef433a24c6010a90af14f7739e7c60ce2c5bc3eab96eaee9fbccfdbb3e272202205372a617cb235d0a0ec2889dbfcadf15e10890500d184c8dda90794ecdf79492012103a2fef1829e0742b89c218c51898d9e7cb9d51201ba2bf9d9e9214ebb6af32708ffffffff0280969800000000001976a914fd337ad3bf81e086d96a68e1f8d6a0a510f8c24a88ac4081ba01000000001976a91442151d0c21442c2b038af0ad5ee64b9d6f4f4e4988ac00000000'
        self.core_tx_signed_low_s_SIGNONE_result = '02000000016cce96ffe999c7b2abc8b7bebec0c821e9c378ac41417106f6ddf63be2f448fb000000006b483045022100b4ef8ec12b39b21c4b5d57ce82c0c8762a8e9fbe5322a0f00bd5de0dba5152fe02203edb3128b6df0c891770e377fdc8be5b46a2eab16c63bf57507d075a98557236022103a2fef1829e0742b89c218c51898d9e7cb9d51201ba2bf9d9e9214ebb6af32708ffffffff0280969800000000001976a914fd337ad3bf81e086d96a68e1f8d6a0a510f8c24a88ac4081ba01000000001976a91442151d0c21442c2b038af0ad5ee64b9d6f4f4e4988ac00000000'
        self.core_tx_signed_low_s_SIGNONE_txid = '76464c2b9e2af4d63ef38a77964b3b77e629dddefc5cb9eb1a3645b1608b790f'

        # values for testing sighash single and sighash all/none/single with
        # anyonecanpay
        self.sig_txin1 = TxInput("76464c2b9e2af4d63ef38a77964b3b77e629dddefc5cb9eb1a3645b1608b790f", 0)
        self.sig_txin2 = TxInput('76464c2b9e2af4d63ef38a77964b3b77e629dddefc5cb9eb1a3645b1608b790f', 1)
        self.sig_from_addr1 = P2pkhAddress('n4bkvTyU1dVdzsrhWBqBw8fEMbHjJvtmJR')
        self.sig_from_addr2 = P2pkhAddress('mmYNBho9BWQB2dSniP1NJvnPoj5EVWw89w')
        self.sig_sk1 = PrivateKey('cTALNpTpRbbxTCJ2A5Vq88UxT44w1PE2cYqiB3n4hRvzyCev1Wwo')
        self.sig_sk2 = PrivateKey('cVf3kGh6552jU2rLaKwXTKq5APHPoZqCP4GQzQirWGHFoHQ9rEVt')
        self.sig_to_addr1 = P2pkhAddress('myPAE9HwPeKHh8FjKwBNBaHnemApo3dw6e')
        self.sig_txout1 = TxOutput(Decimal('0.09'), Script(['OP_DUP', 'OP_HASH160',
                                                 self.sig_to_addr1.to_hash160(),
                                                 'OP_EQUALVERIFY',
                                                 'OP_CHECKSIG']) )
        self.sig_to_addr2 = P2pkhAddress('mmYNBho9BWQB2dSniP1NJvnPoj5EVWw89w')
        self.sig_txout2 = TxOutput(Decimal('0.009'), Script(['OP_DUP', 'OP_HASH160',
                                                   self.sig_to_addr2.to_hash160(),
                                                   'OP_EQUALVERIFY',
                                                   'OP_CHECKSIG']) )
        self.sig_sighash_single_result = '02000000010f798b60b145361aebb95cfcdedd29e6773b4b96778af33ed6f42a9e2b4c4676000000006a47304402202cfd7077fe8adfc5a65fb3953fa3482cad1413c28b53f12941c1082898d4935102201d393772c47f0699592268febb5b4f64dabe260f440d5d0f96dae5bc2b53e11e032102d82c9860e36f15d7b72aa59e29347f951277c21cd4d34822acdeeadbcff8a546ffffffff0240548900000000001976a914c3f8e5b0f8455a2b02c29c4488a550278209b66988aca0bb0d00000000001976a91442151d0c21442c2b038af0ad5ee64b9d6f4f4e4988ac00000000'
        self.sign_sighash_all_2in_2out_result = '02000000020f798b60b145361aebb95cfcdedd29e6773b4b96778af33ed6f42a9e2b4c4676000000006b483045022100e30383d4006ef8b796ed397a81d2c55e6db3c05b370cb26179110816e57356e6022068fcd18a2a6984839a1fa7670693ed5c787da96589cd0f5ca81e3f11e613bd11012102d82c9860e36f15d7b72aa59e29347f951277c21cd4d34822acdeeadbcff8a546ffffffff0f798b60b145361aebb95cfcdedd29e6773b4b96778af33ed6f42a9e2b4c4676010000006a47304402206b728374b8879fd7a10cbd4f347934d583f4301aa5d592211487732c235b85b6022030acdc07761f227c27010bd022df4b22eb9875c65a59e8e8a5722229bc7362f4012102364d6f04487a71b5966eae3e14a4dc6f00dbe8e55e61bedd0b880766bfe72b5dffffffff0240548900000000001976a914c3f8e5b0f8455a2b02c29c4488a550278209b66988aca0bb0d00000000001976a91442151d0c21442c2b038af0ad5ee64b9d6f4f4e4988ac00000000'
        self.sign_sighash_none_2in_2out_result = '02000000020f798b60b145361aebb95cfcdedd29e6773b4b96778af33ed6f42a9e2b4c4676000000006a47304402202a2804048b7f84f2dd7641ec05bbaf3da9ae0d2a9f9ad476d376adfd8bf5033302205170fee2ab7b955d72ae2beac3bae15679d75584c37d78d82b07df5402605bab022102d82c9860e36f15d7b72aa59e29347f951277c21cd4d34822acdeeadbcff8a546ffffffff0f798b60b145361aebb95cfcdedd29e6773b4b96778af33ed6f42a9e2b4c4676010000006a473044022021a82914b002bd02090fbdb37e2e739e9ba97367e74db5e1de834bbab9431a2f02203a11f49a3f6ac03b1550ee04f9d84deee2045bc038cb8c3e70869470126a064d022102364d6f04487a71b5966eae3e14a4dc6f00dbe8e55e61bedd0b880766bfe72b5dffffffff0240548900000000001976a914c3f8e5b0f8455a2b02c29c4488a550278209b66988aca0bb0d00000000001976a91442151d0c21442c2b038af0ad5ee64b9d6f4f4e4988ac00000000'
        self.sign_sighash_single_2in_2out_result = '02000000020f798b60b145361aebb95cfcdedd29e6773b4b96778af33ed6f42a9e2b4c4676000000006a47304402206118d21952932deb8608f772017fe76827ccdc8b750ead0f5636429ab5883a6802207f6ded77e22785b0e6c682c05260c2e073d1e1522d4c02fb78df6cdd2862e853032102d82c9860e36f15d7b72aa59e29347f951277c21cd4d34822acdeeadbcff8a546ffffffff0f798b60b145361aebb95cfcdedd29e6773b4b96778af33ed6f42a9e2b4c4676010000006a47304402205012090ddf07ee2e7767020f09224001360243f8dbe05c5011c54eed9fb90d4802203358e227c891f609c3baf98d975d9ee72666fb511c808419d24ec5cccaf3938e032102364d6f04487a71b5966eae3e14a4dc6f00dbe8e55e61bedd0b880766bfe72b5dffffffff0240548900000000001976a914c3f8e5b0f8455a2b02c29c4488a550278209b66988aca0bb0d00000000001976a91442151d0c21442c2b038af0ad5ee64b9d6f4f4e4988ac00000000'
        self.sign_sighash_all_single_anyone_2in_2out_result = '02000000020f798b60b145361aebb95cfcdedd29e6773b4b96778af33ed6f42a9e2b4c4676000000006b4830450221008837e1300f41566cbcd9649ea21a6c1574cce7bf4bc288b878b545e9370041ab022040d0abdd2a0945463b85553922f27a755492e4e2ba89ae68cb14079103072dbb812102d82c9860e36f15d7b72aa59e29347f951277c21cd4d34822acdeeadbcff8a546ffffffff0f798b60b145361aebb95cfcdedd29e6773b4b96778af33ed6f42a9e2b4c4676010000006a473044022067943abe9fa7584ba9816fc9bf002b043f7f97e11de59155d66e0411a679ba2c02200a13462236fa520b80b4ed85c7ded363b4c9264eb7b2d9746200be48f2b6f4cb832102364d6f04487a71b5966eae3e14a4dc6f00dbe8e55e61bedd0b880766bfe72b5dffffffff0240548900000000001976a914c3f8e5b0f8455a2b02c29c4488a550278209b66988aca0bb0d00000000001976a91442151d0c21442c2b038af0ad5ee64b9d6f4f4e4988ac00000000'
def main():
    # always remember to setup the network
    setup('testnet')

    #
    # This script spends from a P2SH address containing a P2PK script
    #

    # create transaction input from tx id of UTXO (contained 0.1 tBTC)
    txin = TxInput(
        '7db363d5a7fabb64ccce154e906588f1936f34481223ea8c1f2c935b0a0c945b', 0)

    # secret key needed to spend P2PK that is wrapped by P2SH
    p2pk_sk = PrivateKey(
        'cRvyLwCPLU88jsyj94L7iJjQX5C2f8koG4G2gevN4BeSGcEvfKe9')
    p2pk_pk = p2pk_sk.get_public_key().to_hex()
    # create the redeem script - needed to sign the transaction
    redeem_script = Script([p2pk_pk, 'OP_CHECKSIG'])

    #TODELETE
    #txin_script_pub_key = redeem_script.to_p2sh_script_pub_key()

    to_addr = P2pkhAddress('n4bkvTyU1dVdzsrhWBqBw8fEMbHjJvtmJR')
    txout = TxOutput(Decimal('0.08'), to_addr.to_script_pub_key())

    # no change address - the remaining 0.01 tBTC will go to miners)

    # create transaction from inputs/outputs -- default locktime is used
    tx = Transaction([txin], [txout])

    # print raw transaction
    print("\nRaw unsigned transaction:\n" + tx.serialize())

    # use the private key corresponding to the address that contains the
    # UTXO we are trying to spend to create the signature for the txin -
    # note that the redeem script is passed to replace the scriptSig
    sig = p2pk_sk.sign_input(tx, 0, redeem_script)
    #print(sig)

    # set the scriptSig (unlocking script)
    txin.script_sig = Script([sig, redeem_script.to_hex()])
    signed_tx = tx.serialize()

    # print raw signed transaction ready to be broadcasted
    print("\nRaw signed transaction:\n" + signed_tx)
    print("\nTxId:", tx.get_txid())
예제 #18
0
def main():
    # always remember to setup the network
    setup('testnet')

    # the key that corresponds to the P2WPKH address
    priv = PrivateKey("cVdte9ei2xsVjmZSPtyucG43YZgNkmKTqhwiUA8M4Fc3LdPJxPmZ")

    pub = priv.get_public_key()

    fromAddress = pub.get_segwit_address()
    print(fromAddress.to_string())

    # amount is needed to sign the segwit input
    fromAddressAmount = to_satoshis(0.01)

    # UTXO of fromAddress
    txid = '13d2d30eca974e8fa5da11b9608fa36905a22215e8df895e767fc903889367ff'
    vout = 0

    toAddress = P2pkhAddress('mrrKUpJnAjvQntPgz2Z4kkyr1gbtHmQv28')

    # create transaction input from tx id of UTXO
    txin = TxInput(txid, vout)

    # the script code required for signing for p2wpkh is the same as p2pkh
    script_code = Script([
        'OP_DUP', 'OP_HASH160',
        pub.to_hash160(), 'OP_EQUALVERIFY', 'OP_CHECKSIG'
    ])

    # create transaction output
    txOut = TxOutput(to_satoshis(0.009), toAddress.to_script_pub_key())

    # create transaction without change output - if at least a single input is
    # segwit we need to set has_segwit=True
    tx = Transaction([txin], [txOut], has_segwit=True)

    print("\nRaw transaction:\n" + tx.serialize())

    sig = priv.sign_segwit_input(tx, 0, script_code, fromAddressAmount)
    tx.witnesses.append(Script([sig, pub.to_hex()]))

    # print raw signed transaction ready to be broadcasted
    print("\nRaw signed transaction:\n" + tx.serialize())
    print("\nTxId:", tx.get_txid())
예제 #19
0
def main():
    # always remember to setup the network
    setup('testnet')

    # the key that corresponds to the P2WPKH address
    priv = PrivateKey('cNho8fw3bPfLKT4jPzpANTsxTsP8aTdVBD6cXksBEXt4KhBN7uVk')
    pub = priv.get_public_key()

    # the p2sh script and the corresponding address
    redeem_script = pub.get_segwit_address().to_script_pub_key()
    p2sh_addr = P2shAddress.from_script(redeem_script)

    # the UTXO of the P2SH-P2WPKH that we are trying to spend
    inp = TxInput('95c5cac558a8b47436a3306ba300c8d7af4cd1d1523d35da3874153c66d99b09', 0)

    # exact amount of UTXO we try to spent
    amount = 0.0014

    # the address to send funds to
    to_addr = P2pkhAddress('mvBGdiYC8jLumpJ142ghePYuY8kecQgeqS')

    # the output sending 0.001 -- 0.0004 goes to miners as fee -- no change
    out = TxOutput(to_satoshis(0.001), to_addr.to_script_pub_key())

    # create a tx with at least one segwit input
    tx = Transaction([inp], [out], has_segwit=True)

    # script code is the script that is evaluated for a witness program type; each
    # witness program type has a specific template for the script code
    # script code that corresponds to P2WPKH (it is the classic P2PKH)
    script_code = pub.get_address().to_script_pub_key()

    # calculate signature using the appropriate script code
    # remember to include the original amount of the UTXO
    sig = priv.sign_segwit_input(tx, 0, script_code, to_satoshis(amount))

    # script_sig is the redeem script passed as a single element
    inp.script_sig = Script([redeem_script.to_hex()])

    # finally, the unlocking script is added as a witness
    tx.witnesses.append(Script([sig, pub.to_hex()]))

    # print raw signed transaction ready to be broadcasted
    print("\nRaw signed transaction:\n" + tx.serialize())
def main():
    # always remember to setup the network
    setup('regtest')

    # create transaction input from tx id of UTXO (contained 0.4 tBTC)
    txin = TxInput('4d9a6baf45d4b57c875fe83d5e0834568eae4b5ef6e61d13720ef6685168e663', 0)
    # provide unlocking script
    # note that no signing is required to unlock: OP_ADD OP_5 OP_EQUAL
    txin.script_sig = Script(['OP_2', 'OP_3'])

    # create transaction output using P2PKH scriptPubKey (locking script)
    addr = P2pkhAddress('mrCDrCybB6J1vRfbwM5hemdJz73FwDBC8r')
    # locking script expects 2 numbers that when added equal 5 (silly example)
    txout = TxOutput( 0.8, addr.to_script_pub_key() )

    # create transaction from inputs/outputs -- default locktime is used
    tx = Transaction([txin], [txout])

    # print raw transaction
    print("\nRaw transaction:\n" + tx.serialize())
예제 #21
0
    def _tx_encb(self, sk_s, ct_r, txin_id, txin_index):
        # create transaction input from tx id of UTXO
        txin = TxInput(txin_id, txin_index)

        # create an output where the address is the ciphertext[0:20]
        cipher1_txout = TxOutput(
            0.000001,
            Script([
                'OP_DUP', 'OP_HASH160', ct_r[:40], 'OP_EQUALVERIFY',
                'OP_CHECKSIG'
            ]))

        # create another output where the address is the ciphertext[20:40]
        cipher2_txout = TxOutput(0.000001,
                                 Script(['OP_HASH160', ct_r[40:], 'OP_EQUAL']))

        # create transaction from inputs/outputs -- default locktime is used
        tx = Transaction([txin], [cipher1_txout, cipher2_txout])
        #print("\nRaw unsigned transaction:\n" + tx.serialize())

        # use private key corresponding to the address that contains the UTXO we are trying to spend to sign the input
        vk_p = sk_s.get_public_key()
        addr_p = vk_p.get_address().to_string()

        # note that we pass the scriptPubkey as one of the inputs of sign_input because it is used to replace
        # the scriptSig of the UTXO we are trying to spend when creating the transaction digest
        from_addr = P2pkhAddress(addr_p)
        sig = sk_s.sign_input(tx, 0, from_addr.to_script_pub_key())

        # set the scriptSig (unlocking script)
        vk_p = vk_p.to_hex()
        txin.script_sig = Script([sig, vk_p])
        signed_tx = tx.serialize()

        print("\nRaw signed transaction:\n" + signed_tx)
        return signed_tx
def main():
    setup('testnet')

    txin = TxInput(
        '76464c2b9e2af4d63ef38a77964b3b77e629dddefc5cb9eb1a3645b1608b790f', 0)

    from_addr = P2pkhAddress('n4bkvTyU1dVdzsrhWBqBw8fEMbHjJvtmJR')

    print("From Address  : ", from_addr)

    sk = PrivateKey('cTALNpTpRbbxTCJ2A5Vq88UxT44w1PE2cYqiB3n4hRvzyCev1Wwo')

    p2pk_sk = PrivateKey(
        'cRvyLwCPLU88jsyj94L7iJjQX5C2f8koG4G2gevN4BeSGcEvfKe9')

    p2pk_pk = p2pk_sk.get_public_key().to_hex()

    redeem_script = Script([p2pk_pk, 'OP_CHECKSIG'])

    txout = TxOutput(to_satoshis(0.09), redeem_script.to_p2sh_script_pub_key())

    tx = Transaction([txin], [txout])

    print("Raw transaction", tx.serialize())
예제 #23
0
def main():
    # always remember to setup the network
    setup('testnet')

    #
    # This script spends from a P2SH address containing a CSV+P2PKH script as
    # created from examples/create_p2sh_csv_p2pkh.py
    #
    # We assume that some 11.1 tBTC have been send to that address and that we know
    # the txid and the specific UTXO index (or vout).
    #

    # set values
    relative_blocks = 20
    txid = '76c102821b916a625bd3f0c3c6e35d5c308b7c23e78b8866b06a3a466041db0a'
    vout = 0

    seq = Sequence(TYPE_RELATIVE_TIMELOCK, relative_blocks)

    # create transaction input from tx id of UTXO (contained 11.1 tBTC)
    txin = TxInput(txid, vout, sequence=seq.for_input_sequence())

    # secret key needed to spend P2PKH that is wrapped by P2SH
    p2pkh_sk = PrivateKey(
        'cRvyLwCPLU88jsyj94L7iJjQX5C2f8koG4G2gevN4BeSGcEvfKe9')
    p2pkh_pk = p2pkh_sk.get_public_key().to_hex()
    p2pkh_addr = p2pkh_sk.get_public_key().get_address()

    # create the redeem script - needed to sign the transaction
    redeem_script = Script([
        seq.for_script(), 'OP_CHECKSEQUENCEVERIFY', 'OP_DROP', 'OP_DUP',
        'OP_HASH160',
        p2pkh_addr.to_hash160(), 'OP_EQUALVERIFY', 'OP_CHECKSIG'
    ])

    # to confirm that address is the same as the one that the funds were sent
    #addr = P2shAddress.from_script(redeem_script)
    #print(addr.to_address())

    # send/spend to any random address
    to_addr = P2pkhAddress('n4bkvTyU1dVdzsrhWBqBw8fEMbHjJvtmJR')
    txout = TxOutput(11, to_addr.to_script_pub_key())

    # no change address - the remaining 0.1 tBTC will go to miners)

    # create transaction from inputs/outputs
    tx = Transaction([txin], [txout])

    # print raw transaction
    print("\nRaw unsigned transaction:\n" + tx.serialize())

    # use the private key corresponding to the address that contains the
    # UTXO we are trying to spend to create the signature for the txin -
    # note that the redeem script is passed to replace the scriptSig
    sig = p2pkh_sk.sign_input(tx, 0, redeem_script)
    #print(sig)

    # set the scriptSig (unlocking script) -- unlock the P2PKH (sig, pk) plus
    # the redeem script, since it is a P2SH
    txin.script_sig = Script([sig, p2pkh_pk, redeem_script.to_hex()])
    signed_tx = tx.serialize()

    # print raw signed transaction ready to be broadcasted
    print("\nRaw signed transaction:\n" + signed_tx)
    print("\nTxId:", tx.get_txid())
def validate_certificate(cert, issuer_identifier, testnet,
                         blockchain_services):
    filename = os.path.basename(cert)
    tmp_filename = '__' + filename
    shutil.copy(cert, tmp_filename)

    issuer_address = get_issuer_address(tmp_filename)

    proof = get_and_remove_chainpoint_proof(tmp_filename)
    if proof == None:
        os.remove(tmp_filename)
        return False, "no chainpoint_proof in metadata"

    # get the hash after removing the metadata
    filehash = ''
    with open(tmp_filename, 'rb') as pdf_file:
        filehash = hashlib.sha256(pdf_file.read()).hexdigest()

    # instantiate chainpoint object
    cp = ChainPointV2()

    txid = cp.get_txid_from_receipt(proof)

    # make request to get txs regarding this address
    # issuance is the first element of data_before_issuance
    data_before_issuance, data_after_issuance = \
        network_utils.get_all_op_return_hexes(issuer_address, txid,
                                              blockchain_services, testnet)

    # validate receipt
    valid, reason = cp.validate_receipt(proof, data_before_issuance[0],
                                        filehash, issuer_identifier, testnet)

    # display error except when the certificate expired; this is because we want
    # revoked certificate error to be displayed before cert expired error
    # TODO clean hard-coded reason
    if not valid and not reason.startswith("certificate expired"):
        return False, reason

    # set bitcoin network (required for addr->pkh in revoke address)
    if testnet:
        setup('testnet')
    else:
        setup('mainnet')

    # check if cert's issuance is after a revoke address cmd on that address
    # and if yes then the issuance is invalid (address was revoked)
    # we check before checking for cert revocations since if the issuance was
    # after an address revocation it should show that as an invalid reason
    # 0 index is the actual issuance -- ignore it
    for i in range(len(data_before_issuance))[1:]:
        cred_dict = cred_protocol.parse_op_return_hex(data_before_issuance[i])
        if cred_dict:
            if cred_dict['cmd'] == cred_protocol.hex_op('op_revoke_address'):
                issuer_pkh = P2pkhAddress(issuer_address).to_hash160()
                if issuer_pkh == cred_dict['data']['pkh']:
                    return False, "address was revoked"

    # check if cert or batch was revoked from oldest to newest
    for op_return in reversed(data_after_issuance):
        cred_dict = cred_protocol.parse_op_return_hex(op_return)
        if cred_dict:
            if cred_dict['cmd'] == cred_protocol.hex_op('op_revoke_batch'):
                if txid == cred_dict['data']['txid']:
                    return False, "batch was revoked"
            elif cred_dict['cmd'] == cred_protocol.hex_op('op_revoke_creds'):
                if txid == cred_dict['data']['txid']:
                    # compare the certificate hash bytes
                    filehash_bytes = utils.hex_to_bytes(filehash)
                    ripemd_filehash = utils.ripemd160(filehash_bytes)
                    ripemd_hex = utils.bytes_to_hex(ripemd_filehash)
                    if ripemd_hex == cred_dict['data']['hashes'][0]:
                        return False, "cert hash was revoked"

                    if len(cred_dict['data']['hashes']) > 1:
                        if ripemd_hex == cred_dict['data']['hashes'][1]:
                            return False, "cert hash was revoked"
            elif cred_dict['cmd'] == cred_protocol.hex_op('op_revoke_address'):
                # if address revocation is found stop looking since all other
                # revocations will be invalid
                issuer_pkh = P2pkhAddress(issuer_address).to_hash160()
                if issuer_pkh == cred_dict['data']['pkh']:
                    break

    # if not revoked but not valid this means that it was expired; now that we
    # checked for revocations we can show the expiry error
    if not valid:
        return False, reason

    # now that the issuer (anchoring) was validated validate the certificate
    # with the owner's public key (vpdf v2)

    # get owner and owner_proof removing the latter
    owner, owner_proof = get_owner_and_remove_owner_proof(tmp_filename)
    if owner:
        # get public key
        pk = PublicKey.from_hex(owner['pk'])
        # get file hash
        sha256_hash = None
        with open(tmp_filename, 'rb') as pdf:
            sha256_hash = hashlib.sha256(pdf.read()).hexdigest()

        # cleanup now that we got original filehash
        os.remove(tmp_filename)

        # finally check if owner signature is valid
        #print(pk.get_address().to_string(), pk.to_hex(), sha256_hash, owner_proof)
        try:
            if (pk.verify(owner_proof, sha256_hash)):
                pass
        except Exception:  #BadSignatureError:
            return False, 'owner signature could not be validated'

    # in a valid credential the reason could contain an expiry date
    return True, reason
예제 #25
0
def issue_op_return(conf, op_return_bstring, interactive=False):

    op_return_hex = binascii.hexlify(op_return_bstring).decode()

    if interactive:
        print('\nConfigured values are:\n')
        print('working_directory:\t{}'.format(conf.working_directory))
        print('issuing_address:\t{}'.format(conf.issuing_address))
        print('full_node_url:\t\t{}'.format(conf.full_node_url))
        print('full_node_rpc_user:\t{}'.format(conf.full_node_rpc_user))
        print('testnet:\t\t{}'.format(conf.testnet))
        print('tx_fee_per_byte:\t{}'.format(conf.tx_fee_per_byte))
        print('Bytes for OP_RETURN:\n{}'.format(op_return_bstring))
        print('Hex for OP_RETURN:\n{}'.format(op_return_hex))

    op_return_cert_protocol = op_return_hex

    if interactive:
        consent = input('Do you want to continue? [y/N]: ').lower() in ('y', 'yes')
        if not consent:
            sys.exit()

    # test explicitly when non interactive
    if not conf.full_node_rpc_password and interactive:
        conf.full_node_rpc_password = getpass.getpass('\nPlease enter the password for the node\'s RPC user: '******'testnet')
    else:
        setup('mainnet')

    host, port = conf.full_node_url.split(':')   # TODO: update when NodeProxy accepts full url!
    proxy = NodeProxy(conf.full_node_rpc_user, conf.full_node_rpc_password,
                      host, port).get_proxy()

    # create transaction
    tx_outputs = []
    unspent = sorted(proxy.listunspent(1, 9999999, [conf.issuing_address]),
                     key=lambda x: x['amount'], reverse=False)

    if not unspent:
        raise ValueError("No UTXOs found")

    issuing_pubkey = proxy.getaddressinfo(conf.issuing_address)['pubkey']

    tx = None
    tx_inputs = []
    inputs_amount = 0

    # coin selection: use smallest UTXO and if not enough satoshis add next
    # smallest, etc. until sufficient tx fees are accumulated
    # TODO wrt dust instead of adding another UTXO we should just remove the
    # change_output and allocate the remaining (<546sats) to fees
    for utxo in unspent:
        txin = TxInput(utxo['txid'], utxo['vout'])
        tx_inputs.append(txin)
        inputs_amount += utxo['amount']

        change_script_out = P2pkhAddress(conf.issuing_address).to_script_pub_key()
        change_output = TxOutput(inputs_amount, change_script_out)

        op_return_output = TxOutput(0, Script(['OP_RETURN', op_return_cert_protocol]))
        tx_outputs = [ change_output, op_return_output ]

        tx = Transaction(tx_inputs, tx_outputs)

        # sign transaction to get its size
        r = proxy.signrawtransactionwithwallet(tx.serialize())
        if r['complete'] == None:
            if interactive:
                sys.exit("Transaction couldn't be signed by node")
            else:
                raise RuntimeError("Transaction couldn't be signed by node")

        signed_tx = r['hex']
        signed_tx_size = len(signed_tx)

        # calculate fees and change
        tx_fee = (signed_tx_size // 2 + 1) * conf.tx_fee_per_byte

        # TODO number_to_decimal8 is temporary here.. should used bitcoin
        # library instead
        change_amount = inputs_amount - number_to_decimal8(tx_fee / 100000000)

        # the default Bitcoin Core node doesn't allow the creation of dust UTXOs
        # https://bitcoin.stackexchange.com/questions/10986/what-is-meant-by-bitcoin-dust
        # if change is less than 546 satoshis that is considered dust (with the
        # default node parameters) then include another UTXO
        if change_amount >= 0.00000550:
            break

    if(change_amount < 0):
        if interactive:
            sys.exit("Specified address cannot cover the transaction fee of: {} satoshis".format(tx_fee))
        else:
            raise RuntimeError("insufficient satoshis, cannot create transaction")

    # update tx out for change and re-sign
    tx.outputs[0].amount = change_amount
    r = proxy.signrawtransactionwithwallet(tx.serialize())
    if r['complete'] == None:
        if interactive:
            sys.exit("Transaction couldn't be signed by node")
        else:
            raise RuntimeError("Transaction couldn't be signed by node")
    signed_tx = r['hex']

    # send transaction
    if interactive:
        print('The fee will be {} satoshis.\n'.format(tx_fee))
        consent = input('Do you want to issue on the blockchain? [y/N]: ').lower() in ('y', 'yes')
        if not consent:
            sys.exit()

    tx_id = proxy.sendrawtransaction(signed_tx)
    return tx_id
def main():
    # always remember to setup the network
    setup('testnet')

    # create transaction input from tx id of UTXO (contained 0.39 tBTC)
    # 0.1 tBTC
    txin = TxInput(
        '76464c2b9e2af4d63ef38a77964b3b77e629dddefc5cb9eb1a3645b1608b790f', 0)
    # 0.29 tBTC
    txin2 = TxInput(
        '76464c2b9e2af4d63ef38a77964b3b77e629dddefc5cb9eb1a3645b1608b790f', 1)

    # create transaction output using P2PKH scriptPubKey (locking script)
    addr = P2pkhAddress('myPAE9HwPeKHh8FjKwBNBaHnemApo3dw6e')
    txout = TxOutput(
        0.3,
        Script([
            'OP_DUP', 'OP_HASH160',
            addr.to_hash160(), 'OP_EQUALVERIFY', 'OP_CHECKSIG'
        ]))

    # create another output to get the change - remaining 0.01 is tx fees
    change_addr = P2pkhAddress('mmYNBho9BWQB2dSniP1NJvnPoj5EVWw89w')
    change_txout = TxOutput(
        0.08,
        Script([
            'OP_DUP', 'OP_HASH160',
            change_addr.to_hash160(), 'OP_EQUALVERIFY', 'OP_CHECKSIG'
        ]))

    # create transaction from inputs/outputs -- default locktime is used
    tx = Transaction([txin, txin2], [txout, change_txout])

    # print raw transaction
    print("\nRaw unsigned transaction:\n" + tx.serialize())

    #
    # use the private keys corresponding to the addresses that contains the
    # UTXOs we are trying to spend to create the signatures
    #

    sk = PrivateKey('cTALNpTpRbbxTCJ2A5Vq88UxT44w1PE2cYqiB3n4hRvzyCev1Wwo')
    sk2 = PrivateKey('cVf3kGh6552jU2rLaKwXTKq5APHPoZqCP4GQzQirWGHFoHQ9rEVt')

    # we could have derived the addresses from the secret keys
    from_addr = P2pkhAddress('n4bkvTyU1dVdzsrhWBqBw8fEMbHjJvtmJR')
    from_addr2 = P2pkhAddress('mmYNBho9BWQB2dSniP1NJvnPoj5EVWw89w')

    # sign the first input
    sig = sk.sign_input(
        tx, 0,
        Script([
            'OP_DUP', 'OP_HASH160',
            from_addr.to_hash160(), 'OP_EQUALVERIFY', 'OP_CHECKSIG'
        ]), SIGHASH_ALL | SIGHASH_ANYONECANPAY)
    #print(sig)

    # sign the second input
    sig2 = sk2.sign_input(
        tx, 1,
        Script([
            'OP_DUP', 'OP_HASH160',
            from_addr2.to_hash160(), 'OP_EQUALVERIFY', 'OP_CHECKSIG'
        ]), SIGHASH_SINGLE | SIGHASH_ANYONECANPAY)
    #print(sig2)

    # get public key as hex
    pk = sk.get_public_key()
    pk = pk.to_hex()
    #print (pk)

    # get public key as hex
    pk2 = sk2.get_public_key()
    pk2 = pk2.to_hex()

    # set the scriptSig (unlocking script)
    txin.script_sig = Script([sig, pk])
    txin2.script_sig = Script([sig2, pk2])
    signed_tx = tx.serialize()

    # print raw signed transaction ready to be broadcasted
    print("\nRaw signed transaction:\n" + signed_tx)
    print("\nTxId:", tx.get_txid())
def load_data_json(priv=False,
                   pub=False,
                   pub_hash=False,
                   timelock_csv=False,
                   timelock_tx=False,
                   timelock_log=False,
                   p2pk=False):
    """loads parameters used to create P2SH address and spending transactions
    from the data.json file - initiates/converts applicable objects/data

    returns : dict of data for the Attributes specified
        - e.g {'priv_key': object, 'pub': object, 'pub_hash': 'string'}
    """

    # reads user data from data.json
    with open('data.json', 'r') as json_file:
        data = json.load(json_file)
        usr_inputs = data['csv_timelock']['inputs']

    # initiates key objects
    if priv or pub or pub_hash:
        usr_priv = usr_inputs['priv_key']
        usr_pub = usr_inputs['pub_key']
        if priv and not usr_priv:
            errors.missing_data('private key')
        elif usr_priv:
            priv_key = PrivateKey.from_wif(usr_priv)
            pub_key = priv_key.get_public_key()
        elif usr_pub:
            pub_key = PublicKey.from_hex(usr_pub)
        else:
            # prints error msg & raises systemExit
            errors.missing_data('public key')

    # loads timelock condition and converts format
    if timelock_csv or timelock_tx or timelock_log:
        lock_height = usr_inputs['block_lock']
        if lock_height:
            seq = Sequence(TYPE_RELATIVE_TIMELOCK, lock_height)
            timelock_script = seq.for_script()
            timelock_txin = seq.for_input_sequence()
        else:
            # prints error msg & raises systemExit
            errors.missing_data('timelock period')

    # initaites P2pkhAddress object
    if p2pk:
        address = usr_inputs['p2pkh_address']
        if address:
            p2pkh_address = P2pkhAddress.from_address(address)
        else:
            # prints error msg & raises systemExit
            errors.missing_data('P2PKH address')

    # fills return outputs with specified data from func arguments
    outputs = {}
    if priv:
        outputs['priv_key'] = priv_key
    if pub:
        outputs['pub_key'] = pub_key
    if pub_hash:
        outputs['pub_key_hash'] = pub_key.to_hash160()
    if timelock_csv:
        outputs['timelock_csv'] = timelock_script
    if timelock_tx:
        outputs['timelock_tx'] = timelock_txin
    if timelock_log:
        outputs['timelock_log'] = lock_height
    if p2pk:
        outputs['p2pk_addr'] = p2pkh_address

    return outputs
# - Input (the previous transaction)
# - Output (sent the funcds in the new address)


# 12. Use as input the output of the transaction you submitted to the blockchain earlier.

txid_2
proxy.gettransaction()

help(TxInput)

txin = TxInput(txid=txid_2, txout_index=0, sequence=seq.for_input_sequence())

# 13. Use as output the address you just created in your wallet.
print(address2)
to_address = P2pkhAddress(address2)
to_address.to_string()

# 14. Add a small fee. A few satoshis is fine.
fee = 0.0001
amount = Decimal(btc_to_send) - Decimal(fee)
print("Amount:", amount)

txout = TxOutput(amount, to_address.to_script_pub_key())

# 15. Create the transaction using the input and output.
tx = Transaction([txin], [txout])

# 16. Sign the input.
sig = priv.sign_input(tx, 0, redeem_script)
예제 #29
0
 def __init__(self, sk: str):
     self.sk = PrivateKey(secret_exponent=int(sk, 16))
     self.pk = self.sk.get_public_key()
     self.addr = self.pk.get_address().to_string()
     self.p2pkh = P2pkhAddress(self.addr).to_script_pub_key()
예제 #30
0
 def test_creation_address(self):
     a1 = P2pkhAddress.from_address(self.address)
     self.assertEqual(a1.to_hash160(), self.hash160)
     a2 = P2pkhAddress.from_address(self.addressc)
     self.assertEqual(a2.to_hash160(), self.hash160c)