# NEED TO REDUCE BATCH SIZE IF AL EXPERIMENT IS STARTING WITH 20 DATA POINTS # batch_size = 32 batch_size = 16 print '... building model' sys.stdout.flush() bb_alpha = BB_alpha(layer_sizes, n_samples, alpha, learning_rate, v_prior, batch_size, train_set_x, train_set_y, N_train, test_set_x, test_set_y, N_test, mean_y_train, std_y_train) print '... training' sys.stdout.flush() #test_error, test_ll = bb_alpha.train_ADAM(adam_epochs) test_error, test_ll = bb_alpha.train_ADAM(adam_epochs) print('Test Error', test_error) print('Test Log Likelihood', test_ll) all_rmse = test_error for i in range(acquisition_iterations): print('Acquisition Iteration: ', i) x_pool_index = np.asarray(random.sample(range(0, X_pool.shape[0]), Queries)) Pooled_X = X_pool[x_pool_index, :]
# batch_size = 32 batch_size = 16 print '... building model' sys.stdout.flush() bb_alpha = BB_alpha(layer_sizes, n_samples, alpha, learning_rate, v_prior, batch_size, train_set_x, train_set_y, N_train, test_set_x, test_set_y, N_test, mean_y_train, std_y_train) print '... training' sys.stdout.flush() #test_error, test_ll = bb_alpha.train_ADAM(adam_epochs) test_error, test_ll = bb_alpha.train_ADAM(adam_epochs) print('Test Error', test_error) print('Test Log Likelihood', test_ll) all_rmse = test_error for i in range(acquisition_iterations): print('Acquisition Iteration: ', i) x_pool_index = np.asarray(random.sample(range(0, X_pool.shape[0]), Queries)) Pooled_X = X_pool[x_pool_index, :] Pooled_Y = y_pool[x_pool_index, :]
learning_rate = 0.001 v_prior = 1.0 # NEED TO REDUCE BATCH SIZE IF AL EXPERIMENT IS STARTING WITH 20 DATA POINTS batch_size = 32 print '... building model' sys.stdout.flush() bb_alpha = BB_alpha(layer_sizes, n_samples, alpha, learning_rate, v_prior, batch_size, \ train_set_x, train_set_y, N_train, test_set_x, test_set_y, N_test, mean_y_train, std_y_train) print '... training' sys.stdout.flush() #test_error, test_ll = bb_alpha.train_ADAM(500) test_error, test_ll = bb_alpha.train_ADAM(20) print('Test Error', test_error) print('Test Log Likelihood', test_ll) # with open("results/test_ll.txt", "a") as myfile: # myfile.write(repr(test_ll) + '\n') # with open("results/test_error.txt", "a") as myfile: # myfile.write(repr(test_error) + '\n')
train_set_x, train_set_y = datasets[ 0 ] test_set_x, test_set_y = datasets[ 1 ] N_train = train_set_x.get_value(borrow = True).shape[ 0 ] N_test = test_set_x.get_value(borrow = True).shape[ 0 ] layer_sizes = [ d, 100, len(mean_y_train) ] n_samples = 50 alpha = 0.0001 learning_rate = 0.001 v_prior = 1.0 batch_size = 32 print '... building model' sys.stdout.flush() bb_alpha = BB_alpha(layer_sizes, n_samples, alpha, learning_rate, v_prior, batch_size, \ train_set_x, train_set_y, N_train, test_set_x, test_set_y, N_test, mean_y_train, std_y_train) print '... training' sys.stdout.flush() test_error, test_ll = bb_alpha.train_ADAM(500) print('Test Error', test_error) print('Test Log Likelihood', test_ll) # with open("results/test_ll.txt", "a") as myfile: # myfile.write(repr(test_ll) + '\n') # with open("results/test_error.txt", "a") as myfile: # myfile.write(repr(test_error) + '\n')