def __init__(self, step=1, aggregation_type=None, window=1, shift=0, local_vars_configuration=None): # noqa: E501 """InputWindowConfig - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._step = None self._aggregation_type = None self._window = None self._shift = None self.discriminator = None if step is not None: self.step = step if aggregation_type is not None: self.aggregation_type = aggregation_type if window is not None: self.window = window if shift is not None: self.shift = shift
def __init__(self, optimization_algorithm=OptimizationAlgorithm.VIDNEROVANERUDA, crossover_distribution_index=20, crossover_probability=0.9, mutation_distribution_index=20, mutation_probability=None, proc_timeout_seconds=10800, max_num_of_generations=50, population_size=50, hyper_volume=ConvergencyCriterion(), local_vars_configuration=None): # noqa: E501 """AnnOptimizationEngineConfig - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._optimization_algorithm = None self._crossover_distribution_index = None self._crossover_probability = None self._mutation_distribution_index = None self._mutation_probability = None self._proc_timeout_seconds = None self._max_num_of_generations = None self._population_size = None self._hyper_volume = None self.discriminator = None if optimization_algorithm is not None: self.optimization_algorithm = optimization_algorithm if crossover_distribution_index is not None: self.crossover_distribution_index = crossover_distribution_index if crossover_probability is not None: self.crossover_probability = crossover_probability if mutation_distribution_index is not None: self.mutation_distribution_index = mutation_distribution_index if mutation_probability is not None: self.mutation_probability = mutation_probability self.proc_timeout_seconds = proc_timeout_seconds self.max_num_of_generations = max_num_of_generations if population_size is not None: self.population_size = population_size self.hyper_volume = hyper_volume
def __init__(self, input_window_range_configs=None, output_window_configs=None, output_sample_step=1, dropout=None, batch_size=512, dataset_id=None, validation_set_id=None, inputs=None, output_ranges=None, problem_type=ProblemType.REGRESSION, binary_optimization_metric=BinaryMetric.ROC_AUC, regression_optimization_metric=RegressionMetric.MAE, hidden_layer_count_range=None, neurons_per_layer=None, training_algorithms=["Adadelta","Adagrad","Adam","Adamax","Nadam","RMSprop","SGD"], activation_functions=["Elu","HardSigmoid","Linear","ReLu","Selu","Sigmoid","SoftMax","SoftPlus","SoftSign","TanH"], max_epoch=3000, cross_validation=False, validation_split=0.2, random_seed=300, engine_config=AnnOptimizationEngineConfig(), local_vars_configuration=None): # noqa: E501 """AnnSeriesOptimizationConfig - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._input_window_range_configs = None self._output_window_configs = None self._output_sample_step = None self._dropout = None self._batch_size = None self._dataset_id = None self._validation_set_id = None self._inputs = None self._output_ranges = None self._problem_type = None self._binary_optimization_metric = None self._regression_optimization_metric = None self._hidden_layer_count_range = None self._neurons_per_layer = None self._training_algorithms = None self._activation_functions = None self._max_epoch = None self._cross_validation = None self._validation_split = None self._random_seed = None self._engine_config = None self.discriminator = None self.input_window_range_configs = input_window_range_configs self.output_window_configs = output_window_configs if output_sample_step is not None: self.output_sample_step = output_sample_step self.dropout = dropout if batch_size is not None: self.batch_size = batch_size self.dataset_id = dataset_id self.validation_set_id = validation_set_id self.inputs = inputs self.output_ranges = output_ranges if problem_type is not None: self.problem_type = problem_type if binary_optimization_metric is not None: self.binary_optimization_metric = binary_optimization_metric if regression_optimization_metric is not None: self.regression_optimization_metric = regression_optimization_metric self.hidden_layer_count_range = hidden_layer_count_range self.neurons_per_layer = neurons_per_layer self.training_algorithms = training_algorithms self.activation_functions = activation_functions self.max_epoch = max_epoch if cross_validation is not None: self.cross_validation = cross_validation self.validation_split = validation_split self.random_seed = random_seed self.engine_config = engine_config
def __init__(self, dataset_id=None, validation_set_id=None, inputs=None, output_ranges=None, validation_split=0.2, random_seed=300, problem_type=ProblemType.REGRESSION, binary_optimization_metric=BinaryMetric.ROC_AUC, regression_optimization_metric=RegressionMetric.MAE, n_estimators=None, max_depth=None, min_child_weight=None, gamma=None, subsample=None, colsample_bytree=None, reg_alpha=None, learning_rate=None, engine_config=OptimizationEngineConfig(), local_vars_configuration=None): # noqa: E501 """XGBoostOptimizationConfig - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._dataset_id = None self._validation_set_id = None self._inputs = None self._output_ranges = None self._validation_split = None self._random_seed = None self._problem_type = None self._binary_optimization_metric = None self._regression_optimization_metric = None self._n_estimators = None self._max_depth = None self._min_child_weight = None self._gamma = None self._subsample = None self._colsample_bytree = None self._reg_alpha = None self._learning_rate = None self._engine_config = None self.discriminator = None self.dataset_id = dataset_id self.validation_set_id = validation_set_id self.inputs = inputs self.output_ranges = output_ranges if validation_split is not None: self.validation_split = validation_split self.random_seed = random_seed if problem_type is not None: self.problem_type = problem_type if binary_optimization_metric is not None: self.binary_optimization_metric = binary_optimization_metric if regression_optimization_metric is not None: self.regression_optimization_metric = regression_optimization_metric if n_estimators is not None: self.n_estimators = n_estimators if max_depth is not None: self.max_depth = max_depth if min_child_weight is not None: self.min_child_weight = min_child_weight if gamma is not None: self.gamma = gamma if subsample is not None: self.subsample = subsample if colsample_bytree is not None: self.colsample_bytree = colsample_bytree if reg_alpha is not None: self.reg_alpha = reg_alpha if learning_rate is not None: self.learning_rate = learning_rate self.engine_config = engine_config
def __init__(self, epoch=None, guid=None, state=None, generation=None, total_generations=None, validation_set_error=None, training_set_error=None, best_model=None, start_date_time=None, estimated_date_time=None, generation_seconds=None, metric_name=None, local_vars_configuration=None): # noqa: E501 """AnnOptimizationStatus - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._epoch = None self._guid = None self._state = None self._generation = None self._total_generations = None self._validation_set_error = None self._training_set_error = None self._best_model = None self._start_date_time = None self._estimated_date_time = None self._generation_seconds = None self._metric_name = None self.discriminator = None if epoch is not None: self.epoch = epoch if guid is not None: self.guid = guid if state is not None: self.state = state if generation is not None: self.generation = generation if total_generations is not None: self.total_generations = total_generations if validation_set_error is not None: self.validation_set_error = validation_set_error if training_set_error is not None: self.training_set_error = training_set_error self.best_model = best_model if start_date_time is not None: self.start_date_time = start_date_time if estimated_date_time is not None: self.estimated_date_time = estimated_date_time if generation_seconds is not None: self.generation_seconds = generation_seconds self.metric_name = metric_name
def __init__(self, dataset_id=None, validation_set_id=None, inputs=None, output_ranges=None, problem_type=ProblemType.REGRESSION, binary_optimization_metric=BinaryMetric.ROC_AUC, regression_optimization_metric=RegressionMetric.MAE, validation_split=0.2, random_seed=300, engine_config=OptimizationEngineConfig(), number_of_estimators=None, max_depth=None, max_features=None, local_vars_configuration=None): # noqa: E501 """RandomForestOptimizationConfig - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._dataset_id = None self._validation_set_id = None self._inputs = None self._output_ranges = None self._problem_type = None self._binary_optimization_metric = None self._regression_optimization_metric = None self._validation_split = None self._random_seed = None self._engine_config = None self._number_of_estimators = None self._max_depth = None self._max_features = None self.discriminator = None self.dataset_id = dataset_id self.validation_set_id = validation_set_id self.inputs = inputs self.output_ranges = output_ranges if problem_type is not None: self.problem_type = problem_type if binary_optimization_metric is not None: self.binary_optimization_metric = binary_optimization_metric if regression_optimization_metric is not None: self.regression_optimization_metric = regression_optimization_metric self.validation_split = validation_split self.random_seed = random_seed self.engine_config = engine_config if number_of_estimators is not None: self.number_of_estimators = number_of_estimators if max_depth is not None: self.max_depth = max_depth if max_features is not None: self.max_features = max_features
def __init__(self, version='5.1.0', local_vars_configuration=None): # noqa: E501 """ServiceInfo - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._version = None self.discriminator = None self.version = version
def __init__(self, input_window_configs=None, output_window_configs=None, output_sample_step=1, batch_size=512, dataset_id=None, input_ranges=None, output_layer=None, hidden_layer_configs=None, training_algorithm=None, max_epoch=3000, cross_validation=False, validation_split=0.2, random_seed=300, local_vars_configuration=None): # noqa: E501 """AnnSeriesTrainingConfig - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._input_window_configs = None self._output_window_configs = None self._output_sample_step = None self._batch_size = None self._dataset_id = None self._input_ranges = None self._output_layer = None self._hidden_layer_configs = None self._training_algorithm = None self._max_epoch = None self._cross_validation = None self._validation_split = None self._random_seed = None self.discriminator = None self.input_window_configs = input_window_configs self.output_window_configs = output_window_configs if output_sample_step is not None: self.output_sample_step = output_sample_step if batch_size is not None: self.batch_size = batch_size self.dataset_id = dataset_id self.input_ranges = input_ranges self.output_layer = output_layer self.hidden_layer_configs = hidden_layer_configs if training_algorithm is not None: self.training_algorithm = training_algorithm self.max_epoch = max_epoch if cross_validation is not None: self.cross_validation = cross_validation self.validation_split = validation_split self.random_seed = random_seed
def __init__(self, activation_function=None, outputs=None, local_vars_configuration=None): # noqa: E501 """AnnLayerConfig - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._activation_function = None self._outputs = None self.discriminator = None if activation_function is not None: self.activation_function = activation_function self.outputs = outputs
def __init__(self, range=None, encoding=False, local_vars_configuration=None): # noqa: E501 """OutputConfig - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._range = None self._encoding = None self.discriminator = None self.range = range if encoding is not None: self.encoding = encoding
def __init__(self, configuration=None, header_name=None, header_value=None, cookie=None, pool_threads=1): if configuration is None: configuration = Configuration() self.configuration = configuration self.pool_threads = pool_threads self.rest_client = rest.RESTClientObject(configuration) self.default_headers = {} if header_name is not None: self.default_headers[header_name] = header_value self.cookie = cookie # Set default User-Agent. self.user_agent = 'OpenAPI-Generator/1.0.0/python' self.client_side_validation = configuration.client_side_validation
def __init__(self, data_set=None, network_id=None, input_ranges=None, output_ranges=None, local_vars_configuration=None): # noqa: E501 """PredictionArrayConfig - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._data_set = None self._network_id = None self._input_ranges = None self._output_ranges = None self.discriminator = None self.data_set = data_set self.network_id = network_id self.input_ranges = input_ranges self.output_ranges = output_ranges
def __init__(self, window=1, shift=0, local_vars_configuration=None): # noqa: E501 """OutputWindowConfig - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._window = None self._shift = None self.discriminator = None if window is not None: self.window = window if shift is not None: self.shift = shift
def __init__(self, number_of_latest_generations=10, percentage_of_tolerance=5, local_vars_configuration=None): # noqa: E501 """ConvergencyCriterion - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._number_of_latest_generations = None self._percentage_of_tolerance = None self.discriminator = None if number_of_latest_generations is not None: self.number_of_latest_generations = number_of_latest_generations if percentage_of_tolerance is not None: self.percentage_of_tolerance = percentage_of_tolerance
def __init__(self, id=None, epoch_count=None, errors_on_validation_set=None, errors_on_training_set=None, local_vars_configuration=None): # noqa: E501 """TrainedNetwork - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._id = None self._epoch_count = None self._errors_on_validation_set = None self._errors_on_training_set = None self.discriminator = None self.id = id if epoch_count is not None: self.epoch_count = epoch_count self.errors_on_validation_set = errors_on_validation_set self.errors_on_training_set = errors_on_training_set
def __init__(self, min=None, max=None, local_vars_configuration=None): # noqa: E501 """Range - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._min = None self._max = None self.discriminator = None if min is not None: self.min = min if max is not None: self.max = max
def __init__(self, hidden_layers=None, training_algorithm=None, output_layer_activation_function=None, feature_selection=None, local_vars_configuration=None): # noqa: E501 """RnnModel - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._hidden_layers = None self._training_algorithm = None self._output_layer_activation_function = None self._feature_selection = None self.discriminator = None self.hidden_layers = hidden_layers if training_algorithm is not None: self.training_algorithm = training_algorithm if output_layer_activation_function is not None: self.output_layer_activation_function = output_layer_activation_function self.feature_selection = feature_selection
def __init__(self, n_estimators=None, max_depth=None, min_child_weight=None, gamma=None, subsample=None, colsample_bytree=None, reg_alpha=None, learning_rate=None, feature_selection=None, local_vars_configuration=None): # noqa: E501 """XGBoostModel - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._n_estimators = None self._max_depth = None self._min_child_weight = None self._gamma = None self._subsample = None self._colsample_bytree = None self._reg_alpha = None self._learning_rate = None self._feature_selection = None self.discriminator = None if n_estimators is not None: self.n_estimators = n_estimators if max_depth is not None: self.max_depth = max_depth if min_child_weight is not None: self.min_child_weight = min_child_weight if gamma is not None: self.gamma = gamma if subsample is not None: self.subsample = subsample if colsample_bytree is not None: self.colsample_bytree = colsample_bytree if reg_alpha is not None: self.reg_alpha = reg_alpha if learning_rate is not None: self.learning_rate = learning_rate self.feature_selection = feature_selection
def __init__(self, number_of_estimators=None, max_depth=None, max_features=None, feature_selection=None, local_vars_configuration=None): # noqa: E501 """RandomForestModel - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._number_of_estimators = None self._max_depth = None self._max_features = None self._feature_selection = None self.discriminator = None if number_of_estimators is not None: self.number_of_estimators = number_of_estimators if max_depth is not None: self.max_depth = max_depth if max_features is not None: self.max_features = max_features self.feature_selection = feature_selection
def __init__(self, window=None, shift=None, step=None, aggregation_types=["None", "Avg", "Sum"], local_vars_configuration=None): # noqa: E501 """InputWindowRangeConfig - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._window = None self._shift = None self._step = None self._aggregation_types = None self.discriminator = None self.window = window self.shift = shift self.step = step self.aggregation_types = aggregation_types
def __init__(self, neuron_count=None, activation_function=None, dropout=None, local_vars_configuration=None): # noqa: E501 """AnnHiddenLayerConfig - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._neuron_count = None self._activation_function = None self._dropout = None self.discriminator = None if neuron_count is not None: self.neuron_count = neuron_count if activation_function is not None: self.activation_function = activation_function if dropout is not None: self.dropout = dropout
def __init__(self, type=None, title=None, status=None, detail=None, instance=None, local_vars_configuration=None): # noqa: E501 """ProblemDetails - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._type = None self._title = None self._status = None self._detail = None self._instance = None self.discriminator = None self.type = type self.title = title self.status = status self.detail = detail self.instance = instance
def __init__(self, local_vars_configuration=None): # noqa: E501 """RandomForestModelType - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self.discriminator = None
def __init__(self, local_vars_configuration=None): # noqa: E501 """RegressionMetric - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self.discriminator = None
def __init__(self, local_vars_configuration=None): # noqa: E501 """OptimizationState - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self.discriminator = None
def __init__(self, dropout=None, batch_size=512, recurrent_dropout=None, recurrent_output_count=1, dataset_id=None, validation_set_id=None, custom_metric_id=None, custom_metric=None, custom_metric_minimization=True, binary_classification_threshold=None, custom_metric_parameters=None, inputs=None, outputs=None, hidden_layer_count_range=None, neurons_per_layer=None, training_algorithms=[ "Adadelta", "Adagrad", "Adam", "Adamax", "Nadam", "RMSprop", "SGD" ], activation_functions=[ "Elu", "HardSigmoid", "Linear", "ReLu", "Selu", "Sigmoid", "SoftMax", "SoftPlus", "SoftSign", "TanH" ], recurrent_activation_functions=[ "Elu", "HardSigmoid", "Linear", "ReLu", "Selu", "Sigmoid", "SoftMax", "SoftPlus", "SoftSign", "TanH" ], max_epoch=3000, validation_split=0.2, random_seed=300, recurrent_input_count_range=None, engine_config=OptimizationEngineConfig(), local_vars_configuration=None): # noqa: E501 """RnnOptimizationConfig - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._dropout = None self._batch_size = None self._recurrent_dropout = None self._recurrent_output_count = None self._dataset_id = None self._validation_set_id = None self._custom_metric_id = None self._custom_metric = None self._custom_metric_minimization = None self._binary_classification_threshold = None self._custom_metric_parameters = None self._inputs = None self._outputs = None self._hidden_layer_count_range = None self._neurons_per_layer = None self._training_algorithms = None self._activation_functions = None self._recurrent_activation_functions = None self._max_epoch = None self._validation_split = None self._random_seed = None self._recurrent_input_count_range = None self._engine_config = None self.discriminator = None self.dropout = dropout if batch_size is not None: self.batch_size = batch_size self.recurrent_dropout = recurrent_dropout if recurrent_output_count is not None: self.recurrent_output_count = recurrent_output_count self.dataset_id = dataset_id self.validation_set_id = validation_set_id self.custom_metric_id = custom_metric_id self.custom_metric = custom_metric if custom_metric_minimization is not None: self.custom_metric_minimization = custom_metric_minimization self.binary_classification_threshold = binary_classification_threshold self.custom_metric_parameters = custom_metric_parameters self.inputs = inputs self.outputs = outputs self.hidden_layer_count_range = hidden_layer_count_range self.neurons_per_layer = neurons_per_layer self.training_algorithms = training_algorithms self.activation_functions = activation_functions self.recurrent_activation_functions = recurrent_activation_functions self.max_epoch = max_epoch self.validation_split = validation_split self.random_seed = random_seed self.recurrent_input_count_range = recurrent_input_count_range self.engine_config = engine_config
def __init__(self, local_vars_configuration=None): # noqa: E501 """NeuralNetworkTrainingAlgorithm - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self.discriminator = None