def __init__(self,
                 step=1,
                 aggregation_type=None,
                 window=1,
                 shift=0,
                 local_vars_configuration=None):  # noqa: E501
        """InputWindowConfig - a model defined in OpenAPI"""  # noqa: E501
        if local_vars_configuration is None:
            local_vars_configuration = Configuration()
        self.local_vars_configuration = local_vars_configuration

        self._step = None
        self._aggregation_type = None
        self._window = None
        self._shift = None
        self.discriminator = None

        if step is not None:
            self.step = step
        if aggregation_type is not None:
            self.aggregation_type = aggregation_type
        if window is not None:
            self.window = window
        if shift is not None:
            self.shift = shift
예제 #2
0
    def __init__(self, optimization_algorithm=OptimizationAlgorithm.VIDNEROVANERUDA, crossover_distribution_index=20, crossover_probability=0.9, mutation_distribution_index=20, mutation_probability=None, proc_timeout_seconds=10800, max_num_of_generations=50, population_size=50, hyper_volume=ConvergencyCriterion(), local_vars_configuration=None):  # noqa: E501
        """AnnOptimizationEngineConfig - a model defined in OpenAPI"""  # noqa: E501
        if local_vars_configuration is None:
            local_vars_configuration = Configuration()
        self.local_vars_configuration = local_vars_configuration

        self._optimization_algorithm = None
        self._crossover_distribution_index = None
        self._crossover_probability = None
        self._mutation_distribution_index = None
        self._mutation_probability = None
        self._proc_timeout_seconds = None
        self._max_num_of_generations = None
        self._population_size = None
        self._hyper_volume = None
        self.discriminator = None

        if optimization_algorithm is not None:
            self.optimization_algorithm = optimization_algorithm
        if crossover_distribution_index is not None:
            self.crossover_distribution_index = crossover_distribution_index
        if crossover_probability is not None:
            self.crossover_probability = crossover_probability
        if mutation_distribution_index is not None:
            self.mutation_distribution_index = mutation_distribution_index
        if mutation_probability is not None:
            self.mutation_probability = mutation_probability
        self.proc_timeout_seconds = proc_timeout_seconds
        self.max_num_of_generations = max_num_of_generations
        if population_size is not None:
            self.population_size = population_size
        self.hyper_volume = hyper_volume
    def __init__(self, input_window_range_configs=None, output_window_configs=None, output_sample_step=1, dropout=None, batch_size=512, dataset_id=None, validation_set_id=None, inputs=None, output_ranges=None, problem_type=ProblemType.REGRESSION, binary_optimization_metric=BinaryMetric.ROC_AUC, regression_optimization_metric=RegressionMetric.MAE, hidden_layer_count_range=None, neurons_per_layer=None, training_algorithms=["Adadelta","Adagrad","Adam","Adamax","Nadam","RMSprop","SGD"], activation_functions=["Elu","HardSigmoid","Linear","ReLu","Selu","Sigmoid","SoftMax","SoftPlus","SoftSign","TanH"], max_epoch=3000, cross_validation=False, validation_split=0.2, random_seed=300, engine_config=AnnOptimizationEngineConfig(), local_vars_configuration=None):  # noqa: E501
        """AnnSeriesOptimizationConfig - a model defined in OpenAPI"""  # noqa: E501
        if local_vars_configuration is None:
            local_vars_configuration = Configuration()
        self.local_vars_configuration = local_vars_configuration

        self._input_window_range_configs = None
        self._output_window_configs = None
        self._output_sample_step = None
        self._dropout = None
        self._batch_size = None
        self._dataset_id = None
        self._validation_set_id = None
        self._inputs = None
        self._output_ranges = None
        self._problem_type = None
        self._binary_optimization_metric = None
        self._regression_optimization_metric = None
        self._hidden_layer_count_range = None
        self._neurons_per_layer = None
        self._training_algorithms = None
        self._activation_functions = None
        self._max_epoch = None
        self._cross_validation = None
        self._validation_split = None
        self._random_seed = None
        self._engine_config = None
        self.discriminator = None

        self.input_window_range_configs = input_window_range_configs
        self.output_window_configs = output_window_configs
        if output_sample_step is not None:
            self.output_sample_step = output_sample_step
        self.dropout = dropout
        if batch_size is not None:
            self.batch_size = batch_size
        self.dataset_id = dataset_id
        self.validation_set_id = validation_set_id
        self.inputs = inputs
        self.output_ranges = output_ranges
        if problem_type is not None:
            self.problem_type = problem_type
        if binary_optimization_metric is not None:
            self.binary_optimization_metric = binary_optimization_metric
        if regression_optimization_metric is not None:
            self.regression_optimization_metric = regression_optimization_metric
        self.hidden_layer_count_range = hidden_layer_count_range
        self.neurons_per_layer = neurons_per_layer
        self.training_algorithms = training_algorithms
        self.activation_functions = activation_functions
        self.max_epoch = max_epoch
        if cross_validation is not None:
            self.cross_validation = cross_validation
        self.validation_split = validation_split
        self.random_seed = random_seed
        self.engine_config = engine_config
예제 #4
0
    def __init__(self, dataset_id=None, validation_set_id=None, inputs=None, output_ranges=None, validation_split=0.2, random_seed=300, problem_type=ProblemType.REGRESSION, binary_optimization_metric=BinaryMetric.ROC_AUC, regression_optimization_metric=RegressionMetric.MAE, n_estimators=None, max_depth=None, min_child_weight=None, gamma=None, subsample=None, colsample_bytree=None, reg_alpha=None, learning_rate=None, engine_config=OptimizationEngineConfig(), local_vars_configuration=None):  # noqa: E501
        """XGBoostOptimizationConfig - a model defined in OpenAPI"""  # noqa: E501
        if local_vars_configuration is None:
            local_vars_configuration = Configuration()
        self.local_vars_configuration = local_vars_configuration

        self._dataset_id = None
        self._validation_set_id = None
        self._inputs = None
        self._output_ranges = None
        self._validation_split = None
        self._random_seed = None
        self._problem_type = None
        self._binary_optimization_metric = None
        self._regression_optimization_metric = None
        self._n_estimators = None
        self._max_depth = None
        self._min_child_weight = None
        self._gamma = None
        self._subsample = None
        self._colsample_bytree = None
        self._reg_alpha = None
        self._learning_rate = None
        self._engine_config = None
        self.discriminator = None

        self.dataset_id = dataset_id
        self.validation_set_id = validation_set_id
        self.inputs = inputs
        self.output_ranges = output_ranges
        if validation_split is not None:
            self.validation_split = validation_split
        self.random_seed = random_seed
        if problem_type is not None:
            self.problem_type = problem_type
        if binary_optimization_metric is not None:
            self.binary_optimization_metric = binary_optimization_metric
        if regression_optimization_metric is not None:
            self.regression_optimization_metric = regression_optimization_metric
        if n_estimators is not None:
            self.n_estimators = n_estimators
        if max_depth is not None:
            self.max_depth = max_depth
        if min_child_weight is not None:
            self.min_child_weight = min_child_weight
        if gamma is not None:
            self.gamma = gamma
        if subsample is not None:
            self.subsample = subsample
        if colsample_bytree is not None:
            self.colsample_bytree = colsample_bytree
        if reg_alpha is not None:
            self.reg_alpha = reg_alpha
        if learning_rate is not None:
            self.learning_rate = learning_rate
        self.engine_config = engine_config
    def __init__(self,
                 epoch=None,
                 guid=None,
                 state=None,
                 generation=None,
                 total_generations=None,
                 validation_set_error=None,
                 training_set_error=None,
                 best_model=None,
                 start_date_time=None,
                 estimated_date_time=None,
                 generation_seconds=None,
                 metric_name=None,
                 local_vars_configuration=None):  # noqa: E501
        """AnnOptimizationStatus - a model defined in OpenAPI"""  # noqa: E501
        if local_vars_configuration is None:
            local_vars_configuration = Configuration()
        self.local_vars_configuration = local_vars_configuration

        self._epoch = None
        self._guid = None
        self._state = None
        self._generation = None
        self._total_generations = None
        self._validation_set_error = None
        self._training_set_error = None
        self._best_model = None
        self._start_date_time = None
        self._estimated_date_time = None
        self._generation_seconds = None
        self._metric_name = None
        self.discriminator = None

        if epoch is not None:
            self.epoch = epoch
        if guid is not None:
            self.guid = guid
        if state is not None:
            self.state = state
        if generation is not None:
            self.generation = generation
        if total_generations is not None:
            self.total_generations = total_generations
        if validation_set_error is not None:
            self.validation_set_error = validation_set_error
        if training_set_error is not None:
            self.training_set_error = training_set_error
        self.best_model = best_model
        if start_date_time is not None:
            self.start_date_time = start_date_time
        if estimated_date_time is not None:
            self.estimated_date_time = estimated_date_time
        if generation_seconds is not None:
            self.generation_seconds = generation_seconds
        self.metric_name = metric_name
    def __init__(self,
                 dataset_id=None,
                 validation_set_id=None,
                 inputs=None,
                 output_ranges=None,
                 problem_type=ProblemType.REGRESSION,
                 binary_optimization_metric=BinaryMetric.ROC_AUC,
                 regression_optimization_metric=RegressionMetric.MAE,
                 validation_split=0.2,
                 random_seed=300,
                 engine_config=OptimizationEngineConfig(),
                 number_of_estimators=None,
                 max_depth=None,
                 max_features=None,
                 local_vars_configuration=None):  # noqa: E501
        """RandomForestOptimizationConfig - a model defined in OpenAPI"""  # noqa: E501
        if local_vars_configuration is None:
            local_vars_configuration = Configuration()
        self.local_vars_configuration = local_vars_configuration

        self._dataset_id = None
        self._validation_set_id = None
        self._inputs = None
        self._output_ranges = None
        self._problem_type = None
        self._binary_optimization_metric = None
        self._regression_optimization_metric = None
        self._validation_split = None
        self._random_seed = None
        self._engine_config = None
        self._number_of_estimators = None
        self._max_depth = None
        self._max_features = None
        self.discriminator = None

        self.dataset_id = dataset_id
        self.validation_set_id = validation_set_id
        self.inputs = inputs
        self.output_ranges = output_ranges
        if problem_type is not None:
            self.problem_type = problem_type
        if binary_optimization_metric is not None:
            self.binary_optimization_metric = binary_optimization_metric
        if regression_optimization_metric is not None:
            self.regression_optimization_metric = regression_optimization_metric
        self.validation_split = validation_split
        self.random_seed = random_seed
        self.engine_config = engine_config
        if number_of_estimators is not None:
            self.number_of_estimators = number_of_estimators
        if max_depth is not None:
            self.max_depth = max_depth
        if max_features is not None:
            self.max_features = max_features
예제 #7
0
    def __init__(self,
                 version='5.1.0',
                 local_vars_configuration=None):  # noqa: E501
        """ServiceInfo - a model defined in OpenAPI"""  # noqa: E501
        if local_vars_configuration is None:
            local_vars_configuration = Configuration()
        self.local_vars_configuration = local_vars_configuration

        self._version = None
        self.discriminator = None

        self.version = version
    def __init__(self,
                 input_window_configs=None,
                 output_window_configs=None,
                 output_sample_step=1,
                 batch_size=512,
                 dataset_id=None,
                 input_ranges=None,
                 output_layer=None,
                 hidden_layer_configs=None,
                 training_algorithm=None,
                 max_epoch=3000,
                 cross_validation=False,
                 validation_split=0.2,
                 random_seed=300,
                 local_vars_configuration=None):  # noqa: E501
        """AnnSeriesTrainingConfig - a model defined in OpenAPI"""  # noqa: E501
        if local_vars_configuration is None:
            local_vars_configuration = Configuration()
        self.local_vars_configuration = local_vars_configuration

        self._input_window_configs = None
        self._output_window_configs = None
        self._output_sample_step = None
        self._batch_size = None
        self._dataset_id = None
        self._input_ranges = None
        self._output_layer = None
        self._hidden_layer_configs = None
        self._training_algorithm = None
        self._max_epoch = None
        self._cross_validation = None
        self._validation_split = None
        self._random_seed = None
        self.discriminator = None

        self.input_window_configs = input_window_configs
        self.output_window_configs = output_window_configs
        if output_sample_step is not None:
            self.output_sample_step = output_sample_step
        if batch_size is not None:
            self.batch_size = batch_size
        self.dataset_id = dataset_id
        self.input_ranges = input_ranges
        self.output_layer = output_layer
        self.hidden_layer_configs = hidden_layer_configs
        if training_algorithm is not None:
            self.training_algorithm = training_algorithm
        self.max_epoch = max_epoch
        if cross_validation is not None:
            self.cross_validation = cross_validation
        self.validation_split = validation_split
        self.random_seed = random_seed
예제 #9
0
    def __init__(self, activation_function=None, outputs=None, local_vars_configuration=None):  # noqa: E501
        """AnnLayerConfig - a model defined in OpenAPI"""  # noqa: E501
        if local_vars_configuration is None:
            local_vars_configuration = Configuration()
        self.local_vars_configuration = local_vars_configuration

        self._activation_function = None
        self._outputs = None
        self.discriminator = None

        if activation_function is not None:
            self.activation_function = activation_function
        self.outputs = outputs
예제 #10
0
    def __init__(self, range=None, encoding=False, local_vars_configuration=None):  # noqa: E501
        """OutputConfig - a model defined in OpenAPI"""  # noqa: E501
        if local_vars_configuration is None:
            local_vars_configuration = Configuration()
        self.local_vars_configuration = local_vars_configuration

        self._range = None
        self._encoding = None
        self.discriminator = None

        self.range = range
        if encoding is not None:
            self.encoding = encoding
예제 #11
0
    def __init__(self, configuration=None, header_name=None, header_value=None,
                 cookie=None, pool_threads=1):
        if configuration is None:
            configuration = Configuration()
        self.configuration = configuration
        self.pool_threads = pool_threads

        self.rest_client = rest.RESTClientObject(configuration)
        self.default_headers = {}
        if header_name is not None:
            self.default_headers[header_name] = header_value
        self.cookie = cookie
        # Set default User-Agent.
        self.user_agent = 'OpenAPI-Generator/1.0.0/python'
        self.client_side_validation = configuration.client_side_validation
    def __init__(self, data_set=None, network_id=None, input_ranges=None, output_ranges=None, local_vars_configuration=None):  # noqa: E501
        """PredictionArrayConfig - a model defined in OpenAPI"""  # noqa: E501
        if local_vars_configuration is None:
            local_vars_configuration = Configuration()
        self.local_vars_configuration = local_vars_configuration

        self._data_set = None
        self._network_id = None
        self._input_ranges = None
        self._output_ranges = None
        self.discriminator = None

        self.data_set = data_set
        self.network_id = network_id
        self.input_ranges = input_ranges
        self.output_ranges = output_ranges
    def __init__(self,
                 window=1,
                 shift=0,
                 local_vars_configuration=None):  # noqa: E501
        """OutputWindowConfig - a model defined in OpenAPI"""  # noqa: E501
        if local_vars_configuration is None:
            local_vars_configuration = Configuration()
        self.local_vars_configuration = local_vars_configuration

        self._window = None
        self._shift = None
        self.discriminator = None

        if window is not None:
            self.window = window
        if shift is not None:
            self.shift = shift
    def __init__(self,
                 number_of_latest_generations=10,
                 percentage_of_tolerance=5,
                 local_vars_configuration=None):  # noqa: E501
        """ConvergencyCriterion - a model defined in OpenAPI"""  # noqa: E501
        if local_vars_configuration is None:
            local_vars_configuration = Configuration()
        self.local_vars_configuration = local_vars_configuration

        self._number_of_latest_generations = None
        self._percentage_of_tolerance = None
        self.discriminator = None

        if number_of_latest_generations is not None:
            self.number_of_latest_generations = number_of_latest_generations
        if percentage_of_tolerance is not None:
            self.percentage_of_tolerance = percentage_of_tolerance
    def __init__(self, id=None, epoch_count=None, errors_on_validation_set=None, errors_on_training_set=None, local_vars_configuration=None):  # noqa: E501
        """TrainedNetwork - a model defined in OpenAPI"""  # noqa: E501
        if local_vars_configuration is None:
            local_vars_configuration = Configuration()
        self.local_vars_configuration = local_vars_configuration

        self._id = None
        self._epoch_count = None
        self._errors_on_validation_set = None
        self._errors_on_training_set = None
        self.discriminator = None

        self.id = id
        if epoch_count is not None:
            self.epoch_count = epoch_count
        self.errors_on_validation_set = errors_on_validation_set
        self.errors_on_training_set = errors_on_training_set
예제 #16
0
    def __init__(self,
                 min=None,
                 max=None,
                 local_vars_configuration=None):  # noqa: E501
        """Range - a model defined in OpenAPI"""  # noqa: E501
        if local_vars_configuration is None:
            local_vars_configuration = Configuration()
        self.local_vars_configuration = local_vars_configuration

        self._min = None
        self._max = None
        self.discriminator = None

        if min is not None:
            self.min = min
        if max is not None:
            self.max = max
예제 #17
0
    def __init__(self, hidden_layers=None, training_algorithm=None, output_layer_activation_function=None, feature_selection=None, local_vars_configuration=None):  # noqa: E501
        """RnnModel - a model defined in OpenAPI"""  # noqa: E501
        if local_vars_configuration is None:
            local_vars_configuration = Configuration()
        self.local_vars_configuration = local_vars_configuration

        self._hidden_layers = None
        self._training_algorithm = None
        self._output_layer_activation_function = None
        self._feature_selection = None
        self.discriminator = None

        self.hidden_layers = hidden_layers
        if training_algorithm is not None:
            self.training_algorithm = training_algorithm
        if output_layer_activation_function is not None:
            self.output_layer_activation_function = output_layer_activation_function
        self.feature_selection = feature_selection
예제 #18
0
    def __init__(self,
                 n_estimators=None,
                 max_depth=None,
                 min_child_weight=None,
                 gamma=None,
                 subsample=None,
                 colsample_bytree=None,
                 reg_alpha=None,
                 learning_rate=None,
                 feature_selection=None,
                 local_vars_configuration=None):  # noqa: E501
        """XGBoostModel - a model defined in OpenAPI"""  # noqa: E501
        if local_vars_configuration is None:
            local_vars_configuration = Configuration()
        self.local_vars_configuration = local_vars_configuration

        self._n_estimators = None
        self._max_depth = None
        self._min_child_weight = None
        self._gamma = None
        self._subsample = None
        self._colsample_bytree = None
        self._reg_alpha = None
        self._learning_rate = None
        self._feature_selection = None
        self.discriminator = None

        if n_estimators is not None:
            self.n_estimators = n_estimators
        if max_depth is not None:
            self.max_depth = max_depth
        if min_child_weight is not None:
            self.min_child_weight = min_child_weight
        if gamma is not None:
            self.gamma = gamma
        if subsample is not None:
            self.subsample = subsample
        if colsample_bytree is not None:
            self.colsample_bytree = colsample_bytree
        if reg_alpha is not None:
            self.reg_alpha = reg_alpha
        if learning_rate is not None:
            self.learning_rate = learning_rate
        self.feature_selection = feature_selection
예제 #19
0
    def __init__(self, number_of_estimators=None, max_depth=None, max_features=None, feature_selection=None, local_vars_configuration=None):  # noqa: E501
        """RandomForestModel - a model defined in OpenAPI"""  # noqa: E501
        if local_vars_configuration is None:
            local_vars_configuration = Configuration()
        self.local_vars_configuration = local_vars_configuration

        self._number_of_estimators = None
        self._max_depth = None
        self._max_features = None
        self._feature_selection = None
        self.discriminator = None

        if number_of_estimators is not None:
            self.number_of_estimators = number_of_estimators
        if max_depth is not None:
            self.max_depth = max_depth
        if max_features is not None:
            self.max_features = max_features
        self.feature_selection = feature_selection
예제 #20
0
    def __init__(self,
                 window=None,
                 shift=None,
                 step=None,
                 aggregation_types=["None", "Avg", "Sum"],
                 local_vars_configuration=None):  # noqa: E501
        """InputWindowRangeConfig - a model defined in OpenAPI"""  # noqa: E501
        if local_vars_configuration is None:
            local_vars_configuration = Configuration()
        self.local_vars_configuration = local_vars_configuration

        self._window = None
        self._shift = None
        self._step = None
        self._aggregation_types = None
        self.discriminator = None

        self.window = window
        self.shift = shift
        self.step = step
        self.aggregation_types = aggregation_types
예제 #21
0
    def __init__(self,
                 neuron_count=None,
                 activation_function=None,
                 dropout=None,
                 local_vars_configuration=None):  # noqa: E501
        """AnnHiddenLayerConfig - a model defined in OpenAPI"""  # noqa: E501
        if local_vars_configuration is None:
            local_vars_configuration = Configuration()
        self.local_vars_configuration = local_vars_configuration

        self._neuron_count = None
        self._activation_function = None
        self._dropout = None
        self.discriminator = None

        if neuron_count is not None:
            self.neuron_count = neuron_count
        if activation_function is not None:
            self.activation_function = activation_function
        if dropout is not None:
            self.dropout = dropout
예제 #22
0
    def __init__(self,
                 type=None,
                 title=None,
                 status=None,
                 detail=None,
                 instance=None,
                 local_vars_configuration=None):  # noqa: E501
        """ProblemDetails - a model defined in OpenAPI"""  # noqa: E501
        if local_vars_configuration is None:
            local_vars_configuration = Configuration()
        self.local_vars_configuration = local_vars_configuration

        self._type = None
        self._title = None
        self._status = None
        self._detail = None
        self._instance = None
        self.discriminator = None

        self.type = type
        self.title = title
        self.status = status
        self.detail = detail
        self.instance = instance
예제 #23
0
 def __init__(self, local_vars_configuration=None):  # noqa: E501
     """RandomForestModelType - a model defined in OpenAPI"""  # noqa: E501
     if local_vars_configuration is None:
         local_vars_configuration = Configuration()
     self.local_vars_configuration = local_vars_configuration
     self.discriminator = None
예제 #24
0
 def __init__(self, local_vars_configuration=None):  # noqa: E501
     """RegressionMetric - a model defined in OpenAPI"""  # noqa: E501
     if local_vars_configuration is None:
         local_vars_configuration = Configuration()
     self.local_vars_configuration = local_vars_configuration
     self.discriminator = None
 def __init__(self, local_vars_configuration=None):  # noqa: E501
     """OptimizationState - a model defined in OpenAPI"""  # noqa: E501
     if local_vars_configuration is None:
         local_vars_configuration = Configuration()
     self.local_vars_configuration = local_vars_configuration
     self.discriminator = None
    def __init__(self,
                 dropout=None,
                 batch_size=512,
                 recurrent_dropout=None,
                 recurrent_output_count=1,
                 dataset_id=None,
                 validation_set_id=None,
                 custom_metric_id=None,
                 custom_metric=None,
                 custom_metric_minimization=True,
                 binary_classification_threshold=None,
                 custom_metric_parameters=None,
                 inputs=None,
                 outputs=None,
                 hidden_layer_count_range=None,
                 neurons_per_layer=None,
                 training_algorithms=[
                     "Adadelta", "Adagrad", "Adam", "Adamax", "Nadam",
                     "RMSprop", "SGD"
                 ],
                 activation_functions=[
                     "Elu", "HardSigmoid", "Linear", "ReLu", "Selu", "Sigmoid",
                     "SoftMax", "SoftPlus", "SoftSign", "TanH"
                 ],
                 recurrent_activation_functions=[
                     "Elu", "HardSigmoid", "Linear", "ReLu", "Selu", "Sigmoid",
                     "SoftMax", "SoftPlus", "SoftSign", "TanH"
                 ],
                 max_epoch=3000,
                 validation_split=0.2,
                 random_seed=300,
                 recurrent_input_count_range=None,
                 engine_config=OptimizationEngineConfig(),
                 local_vars_configuration=None):  # noqa: E501
        """RnnOptimizationConfig - a model defined in OpenAPI"""  # noqa: E501
        if local_vars_configuration is None:
            local_vars_configuration = Configuration()
        self.local_vars_configuration = local_vars_configuration

        self._dropout = None
        self._batch_size = None
        self._recurrent_dropout = None
        self._recurrent_output_count = None
        self._dataset_id = None
        self._validation_set_id = None
        self._custom_metric_id = None
        self._custom_metric = None
        self._custom_metric_minimization = None
        self._binary_classification_threshold = None
        self._custom_metric_parameters = None
        self._inputs = None
        self._outputs = None
        self._hidden_layer_count_range = None
        self._neurons_per_layer = None
        self._training_algorithms = None
        self._activation_functions = None
        self._recurrent_activation_functions = None
        self._max_epoch = None
        self._validation_split = None
        self._random_seed = None
        self._recurrent_input_count_range = None
        self._engine_config = None
        self.discriminator = None

        self.dropout = dropout
        if batch_size is not None:
            self.batch_size = batch_size
        self.recurrent_dropout = recurrent_dropout
        if recurrent_output_count is not None:
            self.recurrent_output_count = recurrent_output_count
        self.dataset_id = dataset_id
        self.validation_set_id = validation_set_id
        self.custom_metric_id = custom_metric_id
        self.custom_metric = custom_metric
        if custom_metric_minimization is not None:
            self.custom_metric_minimization = custom_metric_minimization
        self.binary_classification_threshold = binary_classification_threshold
        self.custom_metric_parameters = custom_metric_parameters
        self.inputs = inputs
        self.outputs = outputs
        self.hidden_layer_count_range = hidden_layer_count_range
        self.neurons_per_layer = neurons_per_layer
        self.training_algorithms = training_algorithms
        self.activation_functions = activation_functions
        self.recurrent_activation_functions = recurrent_activation_functions
        self.max_epoch = max_epoch
        self.validation_split = validation_split
        self.random_seed = random_seed
        self.recurrent_input_count_range = recurrent_input_count_range
        self.engine_config = engine_config
 def __init__(self, local_vars_configuration=None):  # noqa: E501
     """NeuralNetworkTrainingAlgorithm - a model defined in OpenAPI"""  # noqa: E501
     if local_vars_configuration is None:
         local_vars_configuration = Configuration()
     self.local_vars_configuration = local_vars_configuration
     self.discriminator = None