예제 #1
0
    save_results = params.get("save_topk_result")
    new_data = nnquery.get_topk_predictions(
        reranker,
        test_dataloader,
        candidate_pool,
        candidate_encoding,
        params["silent"],
        logger,
        params["top_k"],
        params.get("zeshel", None),
        save_results,
    )

    if save_results:
        save_data_path = os.path.join(
            params['output_path'],
            'candidates_%s_top%d.t7' % (params['mode'], params['top_k']))
        torch.save(new_data, save_data_path)


if __name__ == "__main__":
    parser = BlinkParser(add_model_args=True)
    parser.add_eval_args()

    args = parser.parse_args()
    print(args)

    params = args.__dict__
    main(params)
예제 #2
0
    logger.info("The training took {} minutes\n".format(execution_time))

    # save the best models
    logger.info(
        "Best ctxt performance in epoch: {}".format(ctxt_best_epoch_idx))
    best_ctxt_model_path = os.path.join(model_output_path,
                                        "epoch_{}".format(ctxt_best_epoch_idx),
                                        "ctxt")
    logger.info(
        "Best cand performance in epoch: {}".format(cand_best_epoch_idx))
    best_cand_model_path = os.path.join(model_output_path,
                                        "epoch_{}".format(cand_best_epoch_idx),
                                        "cand")

    copy_directory(best_ctxt_model_path,
                   os.path.join(model_output_path, "best_epoch", "ctxt"))
    copy_directory(best_cand_model_path,
                   os.path.join(model_output_path, "best_epoch", "cand"))


if __name__ == "__main__":
    parser = BlinkParser(add_model_args=True)
    parser.add_training_args()
    parser.add_joint_train_args()

    args = parser.parse_args()
    print(args)

    params = args.__dict__
    main(params)