예제 #1
0
def create_model_bricks():
    convnet = ConvolutionalSequence(
        layers=[
            Convolutional(
                filter_size=(4, 4),
                num_filters=32,
                name='conv1'),
            SpatialBatchNormalization(name='batch_norm1'),
            Rectifier(),
            Convolutional(
                filter_size=(3, 3),
                step=(2, 2),
                num_filters=32,
                name='conv2'),
            SpatialBatchNormalization(name='batch_norm2'),
            Rectifier(),
            Convolutional(
                filter_size=(4, 4),
                num_filters=64,
                name='conv3'),
            SpatialBatchNormalization(name='batch_norm3'),
            Rectifier(),
            Convolutional(
                filter_size=(3, 3),
                step=(2, 2),
                num_filters=64,
                name='conv4'),
            SpatialBatchNormalization(name='batch_norm4'),
            Rectifier(),
            Convolutional(
                filter_size=(3, 3),
                num_filters=128,
                name='conv5'),
            SpatialBatchNormalization(name='batch_norm5'),
            Rectifier(),
            Convolutional(
                filter_size=(3, 3),
                step=(2, 2),
                num_filters=128,
                name='conv6'),
            SpatialBatchNormalization(name='batch_norm6'),
            Rectifier(),
        ],
        num_channels=3,
        image_size=(64, 64),
        use_bias=False,
        weights_init=IsotropicGaussian(0.033),
        biases_init=Constant(0),
        name='convnet')
    convnet.initialize()

    mlp = BatchNormalizedMLP(
        activations=[Rectifier(), Logistic()],
        dims=[numpy.prod(convnet.get_dim('output')), 1000, 40],
        weights_init=IsotropicGaussian(0.033),
        biases_init=Constant(0),
        name='mlp')
    mlp.initialize()

    return convnet, mlp
예제 #2
0
파일: vae.py 프로젝트: chenbangfeng/discgen
def create_model_bricks(z_dim, image_size, depth):

    g_image_size = image_size
    g_image_size2 = g_image_size / 2
    g_image_size3 = g_image_size / 4
    g_image_size4 = g_image_size / 8
    g_image_size5 = g_image_size / 16

    encoder_layers = []
    if depth > 0:
        encoder_layers = encoder_layers + [
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=32,
                          name='conv1'),
            SpatialBatchNormalization(name='batch_norm1'),
            Rectifier(),
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=32,
                          name='conv2'),
            SpatialBatchNormalization(name='batch_norm2'),
            Rectifier(),
            Convolutional(
                filter_size=(2, 2), step=(2, 2), num_filters=32, name='conv3'),
            SpatialBatchNormalization(name='batch_norm3'),
            Rectifier()
        ]
    if depth > 1:
        encoder_layers = encoder_layers + [
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=64,
                          name='conv4'),
            SpatialBatchNormalization(name='batch_norm4'),
            Rectifier(),
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=64,
                          name='conv5'),
            SpatialBatchNormalization(name='batch_norm5'),
            Rectifier(),
            Convolutional(
                filter_size=(2, 2), step=(2, 2), num_filters=64, name='conv6'),
            SpatialBatchNormalization(name='batch_norm6'),
            Rectifier()
        ]
    if depth > 2:
        encoder_layers = encoder_layers + [
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=128,
                          name='conv7'),
            SpatialBatchNormalization(name='batch_norm7'),
            Rectifier(),
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=128,
                          name='conv8'),
            SpatialBatchNormalization(name='batch_norm8'),
            Rectifier(),
            Convolutional(
                filter_size=(2, 2), step=(2, 2), num_filters=128,
                name='conv9'),
            SpatialBatchNormalization(name='batch_norm9'),
            Rectifier()
        ]
    if depth > 3:
        encoder_layers = encoder_layers + [
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=256,
                          name='conv10'),
            SpatialBatchNormalization(name='batch_norm10'),
            Rectifier(),
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=256,
                          name='conv11'),
            SpatialBatchNormalization(name='batch_norm11'),
            Rectifier(),
            Convolutional(filter_size=(2, 2),
                          step=(2, 2),
                          num_filters=256,
                          name='conv12'),
            SpatialBatchNormalization(name='batch_norm12'),
            Rectifier(),
        ]
    if depth > 4:
        encoder_layers = encoder_layers + [
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=512,
                          name='conv13'),
            SpatialBatchNormalization(name='batch_norm13'),
            Rectifier(),
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=512,
                          name='conv14'),
            SpatialBatchNormalization(name='batch_norm14'),
            Rectifier(),
            Convolutional(filter_size=(2, 2),
                          step=(2, 2),
                          num_filters=512,
                          name='conv15'),
            SpatialBatchNormalization(name='batch_norm15'),
            Rectifier()
        ]

    decoder_layers = []
    if depth > 4:
        decoder_layers = decoder_layers + [
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=512,
                          name='conv_n3'),
            SpatialBatchNormalization(name='batch_norm_n3'),
            Rectifier(),
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=512,
                          name='conv_n2'),
            SpatialBatchNormalization(name='batch_norm_n2'),
            Rectifier(),
            ConvolutionalTranspose(
                filter_size=(2, 2),
                step=(2, 2),
                original_image_size=(g_image_size5, g_image_size5),
                num_filters=512,
                name='conv_n1'),
            SpatialBatchNormalization(name='batch_norm_n1'),
            Rectifier()
        ]

    if depth > 3:
        decoder_layers = decoder_layers + [
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=256,
                          name='conv1'),
            SpatialBatchNormalization(name='batch_norm1'),
            Rectifier(),
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=256,
                          name='conv2'),
            SpatialBatchNormalization(name='batch_norm2'),
            Rectifier(),
            ConvolutionalTranspose(
                filter_size=(2, 2),
                step=(2, 2),
                original_image_size=(g_image_size4, g_image_size4),
                num_filters=256,
                name='conv3'),
            SpatialBatchNormalization(name='batch_norm3'),
            Rectifier()
        ]

    if depth > 2:
        decoder_layers = decoder_layers + [
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=128,
                          name='conv4'),
            SpatialBatchNormalization(name='batch_norm4'),
            Rectifier(),
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=128,
                          name='conv5'),
            SpatialBatchNormalization(name='batch_norm5'),
            Rectifier(),
            ConvolutionalTranspose(
                filter_size=(2, 2),
                step=(2, 2),
                original_image_size=(g_image_size3, g_image_size3),
                num_filters=128,
                name='conv6'),
            SpatialBatchNormalization(name='batch_norm6'),
            Rectifier()
        ]

    if depth > 1:
        decoder_layers = decoder_layers + [
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=64,
                          name='conv7'),
            SpatialBatchNormalization(name='batch_norm7'),
            Rectifier(),
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=64,
                          name='conv8'),
            SpatialBatchNormalization(name='batch_norm8'),
            Rectifier(),
            ConvolutionalTranspose(
                filter_size=(2, 2),
                step=(2, 2),
                original_image_size=(g_image_size2, g_image_size2),
                num_filters=64,
                name='conv9'),
            SpatialBatchNormalization(name='batch_norm9'),
            Rectifier()
        ]

    if depth > 0:
        decoder_layers = decoder_layers + [
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=32,
                          name='conv10'),
            SpatialBatchNormalization(name='batch_norm10'),
            Rectifier(),
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=32,
                          name='conv11'),
            SpatialBatchNormalization(name='batch_norm11'),
            Rectifier(),
            ConvolutionalTranspose(
                filter_size=(2, 2),
                step=(2, 2),
                original_image_size=(g_image_size, g_image_size),
                num_filters=32,
                name='conv12'),
            SpatialBatchNormalization(name='batch_norm12'),
            Rectifier()
        ]

    decoder_layers = decoder_layers + [
        Convolutional(filter_size=(1, 1), num_filters=3, name='conv_out'),
        Logistic()
    ]

    print("creating model of depth {} with {} encoder and {} decoder layers".
          format(depth, len(encoder_layers), len(decoder_layers)))

    encoder_convnet = ConvolutionalSequence(
        layers=encoder_layers,
        num_channels=3,
        image_size=(g_image_size, g_image_size),
        use_bias=False,
        weights_init=IsotropicGaussian(0.033),
        biases_init=Constant(0),
        name='encoder_convnet')
    encoder_convnet.initialize()

    encoder_filters = numpy.prod(encoder_convnet.get_dim('output'))

    encoder_mlp = MLP(
        dims=[encoder_filters, 1000, z_dim],
        activations=[
            Sequence([BatchNormalization(1000).apply,
                      Rectifier().apply],
                     name='activation1'),
            Identity().apply
        ],
        weights_init=IsotropicGaussian(0.033),
        biases_init=Constant(0),
        name='encoder_mlp')
    encoder_mlp.initialize()

    decoder_mlp = BatchNormalizedMLP(
        activations=[Rectifier(), Rectifier()],
        dims=[encoder_mlp.output_dim // 2, 1000, encoder_filters],
        weights_init=IsotropicGaussian(0.033),
        biases_init=Constant(0),
        name='decoder_mlp')
    decoder_mlp.initialize()

    decoder_convnet = ConvolutionalSequence(
        layers=decoder_layers,
        num_channels=encoder_convnet.get_dim('output')[0],
        image_size=encoder_convnet.get_dim('output')[1:],
        use_bias=False,
        weights_init=IsotropicGaussian(0.033),
        biases_init=Constant(0),
        name='decoder_convnet')
    decoder_convnet.initialize()

    return encoder_convnet, encoder_mlp, decoder_convnet, decoder_mlp
예제 #3
0
def create_model_bricks():
    encoder_convnet = ConvolutionalSequence(
        layers=[
            Convolutional(
                filter_size=(3, 3),
                border_mode=(1, 1),
                num_filters=32,
                name='conv1'),
            SpatialBatchNormalization(name='batch_norm1'),
            Rectifier(),
            Convolutional(
                filter_size=(3, 3),
                border_mode=(1, 1),
                num_filters=32,
                name='conv2'),
            SpatialBatchNormalization(name='batch_norm2'),
            Rectifier(),
            Convolutional(
                filter_size=(2, 2),
                step=(2, 2),
                num_filters=32,
                name='conv3'),
            SpatialBatchNormalization(name='batch_norm3'),
            Rectifier(),
            Convolutional(
                filter_size=(3, 3),
                border_mode=(1, 1),
                num_filters=64,
                name='conv4'),
            SpatialBatchNormalization(name='batch_norm4'),
            Rectifier(),
            Convolutional(
                filter_size=(3, 3),
                border_mode=(1, 1),
                num_filters=64,
                name='conv5'),
            SpatialBatchNormalization(name='batch_norm5'),
            Rectifier(),
            Convolutional(
                filter_size=(2, 2),
                step=(2, 2),
                num_filters=64,
                name='conv6'),
            SpatialBatchNormalization(name='batch_norm6'),
            Rectifier(),
            Convolutional(
                filter_size=(3, 3),
                border_mode=(1, 1),
                num_filters=128,
                name='conv7'),
            SpatialBatchNormalization(name='batch_norm7'),
            Rectifier(),
            Convolutional(
                filter_size=(3, 3),
                border_mode=(1, 1),
                num_filters=128,
                name='conv8'),
            SpatialBatchNormalization(name='batch_norm8'),
            Rectifier(),
            Convolutional(
                filter_size=(2, 2),
                step=(2, 2),
                num_filters=128,
                name='conv9'),
            SpatialBatchNormalization(name='batch_norm9'),
            Rectifier(),
            Convolutional(
                filter_size=(3, 3),
                border_mode=(1, 1),
                num_filters=256,
                name='conv10'),
            SpatialBatchNormalization(name='batch_norm10'),
            Rectifier(),
            Convolutional(
                filter_size=(3, 3),
                border_mode=(1, 1),
                num_filters=256,
                name='conv11'),
            SpatialBatchNormalization(name='batch_norm11'),
            Rectifier(),
            Convolutional(
                filter_size=(2, 2),
                step=(2, 2),
                num_filters=256,
                name='conv12'),
            SpatialBatchNormalization(name='batch_norm12'),
            Rectifier(),
        ],
        num_channels=3,
        image_size=(64, 64),
        use_bias=False,
        weights_init=IsotropicGaussian(0.033),
        biases_init=Constant(0),
        name='encoder_convnet')
    encoder_convnet.initialize()

    encoder_filters = numpy.prod(encoder_convnet.get_dim('output'))

    encoder_mlp = MLP(
        dims=[encoder_filters, 1000, 1000],
        activations=[Sequence([BatchNormalization(1000).apply,
                               Rectifier().apply], name='activation1'),
                     Identity().apply],
        weights_init=IsotropicGaussian(0.033),
        biases_init=Constant(0),
        name='encoder_mlp')
    encoder_mlp.initialize()

    decoder_mlp = BatchNormalizedMLP(
        activations=[Rectifier(), Rectifier()],
        dims=[encoder_mlp.output_dim // 2, 1000, encoder_filters],
        weights_init=IsotropicGaussian(0.033),
        biases_init=Constant(0),
        name='decoder_mlp')
    decoder_mlp.initialize()

    decoder_convnet = ConvolutionalSequence(
        layers=[
            Convolutional(
                filter_size=(3, 3),
                border_mode=(1, 1),
                num_filters=256,
                name='conv1'),
            SpatialBatchNormalization(name='batch_norm1'),
            Rectifier(),
            Convolutional(
                filter_size=(3, 3),
                border_mode=(1, 1),
                num_filters=256,
                name='conv2'),
            SpatialBatchNormalization(name='batch_norm2'),
            Rectifier(),
            ConvolutionalTranspose(
                filter_size=(2, 2),
                step=(2, 2),
                original_image_size=(8, 8),
                num_filters=256,
                name='conv3'),
            SpatialBatchNormalization(name='batch_norm3'),
            Rectifier(),
            Convolutional(
                filter_size=(3, 3),
                border_mode=(1, 1),
                num_filters=128,
                name='conv4'),
            SpatialBatchNormalization(name='batch_norm4'),
            Rectifier(),
            Convolutional(
                filter_size=(3, 3),
                border_mode=(1, 1),
                num_filters=128,
                name='conv5'),
            SpatialBatchNormalization(name='batch_norm5'),
            Rectifier(),
            ConvolutionalTranspose(
                filter_size=(2, 2),
                step=(2, 2),
                original_image_size=(16, 16),
                num_filters=128,
                name='conv6'),
            SpatialBatchNormalization(name='batch_norm6'),
            Rectifier(),
            Convolutional(
                filter_size=(3, 3),
                border_mode=(1, 1),
                num_filters=64,
                name='conv7'),
            SpatialBatchNormalization(name='batch_norm7'),
            Rectifier(),
            Convolutional(
                filter_size=(3, 3),
                border_mode=(1, 1),
                num_filters=64,
                name='conv8'),
            SpatialBatchNormalization(name='batch_norm8'),
            Rectifier(),
            ConvolutionalTranspose(
                filter_size=(2, 2),
                step=(2, 2),
                original_image_size=(32, 32),
                num_filters=64,
                name='conv9'),
            SpatialBatchNormalization(name='batch_norm9'),
            Rectifier(),
            Convolutional(
                filter_size=(3, 3),
                border_mode=(1, 1),
                num_filters=32,
                name='conv10'),
            SpatialBatchNormalization(name='batch_norm10'),
            Rectifier(),
            Convolutional(
                filter_size=(3, 3),
                border_mode=(1, 1),
                num_filters=32,
                name='conv11'),
            SpatialBatchNormalization(name='batch_norm11'),
            Rectifier(),
            ConvolutionalTranspose(
                filter_size=(2, 2),
                step=(2, 2),
                original_image_size=(64, 64),
                num_filters=32,
                name='conv12'),
            SpatialBatchNormalization(name='batch_norm12'),
            Rectifier(),
            Convolutional(
                filter_size=(1, 1),
                num_filters=3,
                name='conv_out'),
            Logistic(),
        ],
        num_channels=encoder_convnet.get_dim('output')[0],
        image_size=encoder_convnet.get_dim('output')[1:],
        use_bias=False,
        weights_init=IsotropicGaussian(0.033),
        biases_init=Constant(0),
        name='decoder_convnet')
    decoder_convnet.initialize()

    return encoder_convnet, encoder_mlp, decoder_convnet, decoder_mlp
예제 #4
0
파일: vae.py 프로젝트: dribnet/discgen
def create_model_bricks(z_dim, image_size, depth):

    g_image_size = image_size
    g_image_size2 = g_image_size / 2
    g_image_size3 = g_image_size / 4
    g_image_size4 = g_image_size / 8
    g_image_size5 = g_image_size / 16

    encoder_layers = []
    if depth > 0:
        encoder_layers = encoder_layers + [
            Convolutional(filter_size=(3, 3), border_mode=(1, 1), num_filters=32, name="conv1"),
            SpatialBatchNormalization(name="batch_norm1"),
            Rectifier(),
            Convolutional(filter_size=(3, 3), border_mode=(1, 1), num_filters=32, name="conv2"),
            SpatialBatchNormalization(name="batch_norm2"),
            Rectifier(),
            Convolutional(filter_size=(2, 2), step=(2, 2), num_filters=32, name="conv3"),
            SpatialBatchNormalization(name="batch_norm3"),
            Rectifier(),
        ]
    if depth > 1:
        encoder_layers = encoder_layers + [
            Convolutional(filter_size=(3, 3), border_mode=(1, 1), num_filters=64, name="conv4"),
            SpatialBatchNormalization(name="batch_norm4"),
            Rectifier(),
            Convolutional(filter_size=(3, 3), border_mode=(1, 1), num_filters=64, name="conv5"),
            SpatialBatchNormalization(name="batch_norm5"),
            Rectifier(),
            Convolutional(filter_size=(2, 2), step=(2, 2), num_filters=64, name="conv6"),
            SpatialBatchNormalization(name="batch_norm6"),
            Rectifier(),
        ]
    if depth > 2:
        encoder_layers = encoder_layers + [
            Convolutional(filter_size=(3, 3), border_mode=(1, 1), num_filters=128, name="conv7"),
            SpatialBatchNormalization(name="batch_norm7"),
            Rectifier(),
            Convolutional(filter_size=(3, 3), border_mode=(1, 1), num_filters=128, name="conv8"),
            SpatialBatchNormalization(name="batch_norm8"),
            Rectifier(),
            Convolutional(filter_size=(2, 2), step=(2, 2), num_filters=128, name="conv9"),
            SpatialBatchNormalization(name="batch_norm9"),
            Rectifier(),
        ]
    if depth > 3:
        encoder_layers = encoder_layers + [
            Convolutional(filter_size=(3, 3), border_mode=(1, 1), num_filters=256, name="conv10"),
            SpatialBatchNormalization(name="batch_norm10"),
            Rectifier(),
            Convolutional(filter_size=(3, 3), border_mode=(1, 1), num_filters=256, name="conv11"),
            SpatialBatchNormalization(name="batch_norm11"),
            Rectifier(),
            Convolutional(filter_size=(2, 2), step=(2, 2), num_filters=256, name="conv12"),
            SpatialBatchNormalization(name="batch_norm12"),
            Rectifier(),
        ]
    if depth > 4:
        encoder_layers = encoder_layers + [
            Convolutional(filter_size=(3, 3), border_mode=(1, 1), num_filters=512, name="conv13"),
            SpatialBatchNormalization(name="batch_norm13"),
            Rectifier(),
            Convolutional(filter_size=(3, 3), border_mode=(1, 1), num_filters=512, name="conv14"),
            SpatialBatchNormalization(name="batch_norm14"),
            Rectifier(),
            Convolutional(filter_size=(2, 2), step=(2, 2), num_filters=512, name="conv15"),
            SpatialBatchNormalization(name="batch_norm15"),
            Rectifier(),
        ]

    decoder_layers = []
    if depth > 4:
        decoder_layers = decoder_layers + [
            Convolutional(filter_size=(3, 3), border_mode=(1, 1), num_filters=512, name="conv_n3"),
            SpatialBatchNormalization(name="batch_norm_n3"),
            Rectifier(),
            Convolutional(filter_size=(3, 3), border_mode=(1, 1), num_filters=512, name="conv_n2"),
            SpatialBatchNormalization(name="batch_norm_n2"),
            Rectifier(),
            ConvolutionalTranspose(
                filter_size=(2, 2),
                step=(2, 2),
                original_image_size=(g_image_size5, g_image_size5),
                num_filters=512,
                name="conv_n1",
            ),
            SpatialBatchNormalization(name="batch_norm_n1"),
            Rectifier(),
        ]

    if depth > 3:
        decoder_layers = decoder_layers + [
            Convolutional(filter_size=(3, 3), border_mode=(1, 1), num_filters=256, name="conv1"),
            SpatialBatchNormalization(name="batch_norm1"),
            Rectifier(),
            Convolutional(filter_size=(3, 3), border_mode=(1, 1), num_filters=256, name="conv2"),
            SpatialBatchNormalization(name="batch_norm2"),
            Rectifier(),
            ConvolutionalTranspose(
                filter_size=(2, 2),
                step=(2, 2),
                original_image_size=(g_image_size4, g_image_size4),
                num_filters=256,
                name="conv3",
            ),
            SpatialBatchNormalization(name="batch_norm3"),
            Rectifier(),
        ]

    if depth > 2:
        decoder_layers = decoder_layers + [
            Convolutional(filter_size=(3, 3), border_mode=(1, 1), num_filters=128, name="conv4"),
            SpatialBatchNormalization(name="batch_norm4"),
            Rectifier(),
            Convolutional(filter_size=(3, 3), border_mode=(1, 1), num_filters=128, name="conv5"),
            SpatialBatchNormalization(name="batch_norm5"),
            Rectifier(),
            ConvolutionalTranspose(
                filter_size=(2, 2),
                step=(2, 2),
                original_image_size=(g_image_size3, g_image_size3),
                num_filters=128,
                name="conv6",
            ),
            SpatialBatchNormalization(name="batch_norm6"),
            Rectifier(),
        ]

    if depth > 1:
        decoder_layers = decoder_layers + [
            Convolutional(filter_size=(3, 3), border_mode=(1, 1), num_filters=64, name="conv7"),
            SpatialBatchNormalization(name="batch_norm7"),
            Rectifier(),
            Convolutional(filter_size=(3, 3), border_mode=(1, 1), num_filters=64, name="conv8"),
            SpatialBatchNormalization(name="batch_norm8"),
            Rectifier(),
            ConvolutionalTranspose(
                filter_size=(2, 2),
                step=(2, 2),
                original_image_size=(g_image_size2, g_image_size2),
                num_filters=64,
                name="conv9",
            ),
            SpatialBatchNormalization(name="batch_norm9"),
            Rectifier(),
        ]

    if depth > 0:
        decoder_layers = decoder_layers + [
            Convolutional(filter_size=(3, 3), border_mode=(1, 1), num_filters=32, name="conv10"),
            SpatialBatchNormalization(name="batch_norm10"),
            Rectifier(),
            Convolutional(filter_size=(3, 3), border_mode=(1, 1), num_filters=32, name="conv11"),
            SpatialBatchNormalization(name="batch_norm11"),
            Rectifier(),
            ConvolutionalTranspose(
                filter_size=(2, 2),
                step=(2, 2),
                original_image_size=(g_image_size, g_image_size),
                num_filters=32,
                name="conv12",
            ),
            SpatialBatchNormalization(name="batch_norm12"),
            Rectifier(),
        ]

    decoder_layers = decoder_layers + [Convolutional(filter_size=(1, 1), num_filters=3, name="conv_out"), Logistic()]

    print(
        "creating model of depth {} with {} encoder and {} decoder layers".format(
            depth, len(encoder_layers), len(decoder_layers)
        )
    )

    encoder_convnet = ConvolutionalSequence(
        layers=encoder_layers,
        num_channels=3,
        image_size=(g_image_size, g_image_size),
        use_bias=False,
        weights_init=IsotropicGaussian(0.033),
        biases_init=Constant(0),
        name="encoder_convnet",
    )
    encoder_convnet.initialize()

    encoder_filters = numpy.prod(encoder_convnet.get_dim("output"))

    encoder_mlp = MLP(
        dims=[encoder_filters, 1000, z_dim],
        activations=[
            Sequence([BatchNormalization(1000).apply, Rectifier().apply], name="activation1"),
            Identity().apply,
        ],
        weights_init=IsotropicGaussian(0.033),
        biases_init=Constant(0),
        name="encoder_mlp",
    )
    encoder_mlp.initialize()

    decoder_mlp = BatchNormalizedMLP(
        activations=[Rectifier(), Rectifier()],
        dims=[encoder_mlp.output_dim // 2, 1000, encoder_filters],
        weights_init=IsotropicGaussian(0.033),
        biases_init=Constant(0),
        name="decoder_mlp",
    )
    decoder_mlp.initialize()

    decoder_convnet = ConvolutionalSequence(
        layers=decoder_layers,
        num_channels=encoder_convnet.get_dim("output")[0],
        image_size=encoder_convnet.get_dim("output")[1:],
        use_bias=False,
        weights_init=IsotropicGaussian(0.033),
        biases_init=Constant(0),
        name="decoder_convnet",
    )
    decoder_convnet.initialize()

    return encoder_convnet, encoder_mlp, decoder_convnet, decoder_mlp
예제 #5
0
def create_model_bricks():
    encoder_convnet = ConvolutionalSequence(
        layers=[
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=32,
                          name='conv1'),
            SpatialBatchNormalization(name='batch_norm1'),
            Rectifier(),
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=32,
                          name='conv2'),
            SpatialBatchNormalization(name='batch_norm2'),
            Rectifier(),
            Convolutional(filter_size=(2, 2),
                          step=(2, 2),
                          num_filters=32,
                          name='conv3'),
            SpatialBatchNormalization(name='batch_norm3'),
            Rectifier(),
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=64,
                          name='conv4'),
            SpatialBatchNormalization(name='batch_norm4'),
            Rectifier(),
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=64,
                          name='conv5'),
            SpatialBatchNormalization(name='batch_norm5'),
            Rectifier(),
            Convolutional(filter_size=(2, 2),
                          step=(2, 2),
                          num_filters=64,
                          name='conv6'),
            SpatialBatchNormalization(name='batch_norm6'),
            Rectifier(),
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=128,
                          name='conv7'),
            SpatialBatchNormalization(name='batch_norm7'),
            Rectifier(),
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=128,
                          name='conv8'),
            SpatialBatchNormalization(name='batch_norm8'),
            Rectifier(),
            Convolutional(filter_size=(2, 2),
                          step=(2, 2),
                          num_filters=128,
                          name='conv9'),
            SpatialBatchNormalization(name='batch_norm9'),
            Rectifier(),
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=256,
                          name='conv10'),
            SpatialBatchNormalization(name='batch_norm10'),
            Rectifier(),
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=256,
                          name='conv11'),
            SpatialBatchNormalization(name='batch_norm11'),
            Rectifier(),
            Convolutional(filter_size=(2, 2),
                          step=(2, 2),
                          num_filters=256,
                          name='conv12'),
            SpatialBatchNormalization(name='batch_norm12'),
            Rectifier(),
        ],
        num_channels=3,
        image_size=(64, 64),
        use_bias=False,
        weights_init=IsotropicGaussian(0.033),
        biases_init=Constant(0),
        name='encoder_convnet')
    encoder_convnet.initialize()

    encoder_filters = numpy.prod(encoder_convnet.get_dim('output'))

    encoder_mlp = MLP(
        dims=[encoder_filters, 1000, 1000],
        activations=[
            Sequence([BatchNormalization(1000).apply,
                      Rectifier().apply],
                     name='activation1'),
            Identity().apply
        ],
        weights_init=IsotropicGaussian(0.033),
        biases_init=Constant(0),
        name='encoder_mlp')
    encoder_mlp.initialize()

    decoder_mlp = BatchNormalizedMLP(
        activations=[Rectifier(), Rectifier()],
        dims=[encoder_mlp.output_dim // 2, 1000, encoder_filters],
        weights_init=IsotropicGaussian(0.033),
        biases_init=Constant(0),
        name='decoder_mlp')
    decoder_mlp.initialize()

    decoder_convnet = ConvolutionalSequence(
        layers=[
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=256,
                          name='conv1'),
            SpatialBatchNormalization(name='batch_norm1'),
            Rectifier(),
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=256,
                          name='conv2'),
            SpatialBatchNormalization(name='batch_norm2'),
            Rectifier(),
            ConvolutionalTranspose(filter_size=(2, 2),
                                   step=(2, 2),
                                   original_image_size=(8, 8),
                                   num_filters=256,
                                   name='conv3'),
            SpatialBatchNormalization(name='batch_norm3'),
            Rectifier(),
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=128,
                          name='conv4'),
            SpatialBatchNormalization(name='batch_norm4'),
            Rectifier(),
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=128,
                          name='conv5'),
            SpatialBatchNormalization(name='batch_norm5'),
            Rectifier(),
            ConvolutionalTranspose(filter_size=(2, 2),
                                   step=(2, 2),
                                   original_image_size=(16, 16),
                                   num_filters=128,
                                   name='conv6'),
            SpatialBatchNormalization(name='batch_norm6'),
            Rectifier(),
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=64,
                          name='conv7'),
            SpatialBatchNormalization(name='batch_norm7'),
            Rectifier(),
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=64,
                          name='conv8'),
            SpatialBatchNormalization(name='batch_norm8'),
            Rectifier(),
            ConvolutionalTranspose(filter_size=(2, 2),
                                   step=(2, 2),
                                   original_image_size=(32, 32),
                                   num_filters=64,
                                   name='conv9'),
            SpatialBatchNormalization(name='batch_norm9'),
            Rectifier(),
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=32,
                          name='conv10'),
            SpatialBatchNormalization(name='batch_norm10'),
            Rectifier(),
            Convolutional(filter_size=(3, 3),
                          border_mode=(1, 1),
                          num_filters=32,
                          name='conv11'),
            SpatialBatchNormalization(name='batch_norm11'),
            Rectifier(),
            ConvolutionalTranspose(filter_size=(2, 2),
                                   step=(2, 2),
                                   original_image_size=(64, 64),
                                   num_filters=32,
                                   name='conv12'),
            SpatialBatchNormalization(name='batch_norm12'),
            Rectifier(),
            Convolutional(filter_size=(1, 1), num_filters=3, name='conv_out'),
            Logistic(),
        ],
        num_channels=encoder_convnet.get_dim('output')[0],
        image_size=encoder_convnet.get_dim('output')[1:],
        use_bias=False,
        weights_init=IsotropicGaussian(0.033),
        biases_init=Constant(0),
        name='decoder_convnet')
    decoder_convnet.initialize()

    return encoder_convnet, encoder_mlp, decoder_convnet, decoder_mlp
예제 #6
0
def create_model_bricks(image_size, depth):
    # original celebA64 was depth=3 (went to bach_norm6)
    layers = []
    if(depth > 0):
        layers = layers + [
            Convolutional(
                filter_size=(4, 4),
                num_filters=32,
                name='conv1'),
            SpatialBatchNormalization(name='batch_norm1'),
            Rectifier(),
            Convolutional(
                filter_size=(3, 3),
                step=(2, 2),
                num_filters=32,
                name='conv2'),
            SpatialBatchNormalization(name='batch_norm2'),
            Rectifier(),
        ]
    if(depth > 1):
        layers = layers + [
            Convolutional(
                filter_size=(4, 4),
                num_filters=64,
                name='conv3'),
            SpatialBatchNormalization(name='batch_norm3'),
            Rectifier(),
            Convolutional(
                filter_size=(3, 3),
                step=(2, 2),
                num_filters=64,
                name='conv4'),
            SpatialBatchNormalization(name='batch_norm4'),
            Rectifier(),
        ]
    if(depth > 2):
        layers = layers + [
            Convolutional(
                filter_size=(3, 3),
                num_filters=128,
                name='conv5'),
            SpatialBatchNormalization(name='batch_norm5'),
            Rectifier(),
            Convolutional(
                filter_size=(3, 3),
                step=(2, 2),
                num_filters=128,
                name='conv6'),
            SpatialBatchNormalization(name='batch_norm6'),
            Rectifier(),
        ]
    if(depth > 3):
        layers = layers + [
            Convolutional(
                filter_size=(3, 3),
                num_filters=256,
                name='conv7'),
            SpatialBatchNormalization(name='batch_norm7'),
            Rectifier(),
            Convolutional(
                filter_size=(3, 3),
                step=(2, 2),
                num_filters=256,
                name='conv8'),
            SpatialBatchNormalization(name='batch_norm8'),
            Rectifier(),
        ]
    if(depth > 4):
        layers = layers + [
            Convolutional(
                filter_size=(3, 3),
                num_filters=512,
                name='conv9'),
            SpatialBatchNormalization(name='batch_norm9'),
            Rectifier(),
            Convolutional(
                filter_size=(3, 3),
                step=(2, 2),
                num_filters=512,
                name='conv10'),
            SpatialBatchNormalization(name='batch_norm10'),
            Rectifier(),
        ]
    if(depth > 5):
        layers = layers + [
            Convolutional(
                filter_size=(3, 3),
                num_filters=512,
                name='conv11'),
            SpatialBatchNormalization(name='batch_norm11'),
            Rectifier(),
            Convolutional(
                filter_size=(3, 3),
                step=(2, 2),
                num_filters=512,
                name='conv12'),
            SpatialBatchNormalization(name='batch_norm12'),
            Rectifier(),
        ]
    if(depth > 6):
        layers = layers + [
            Convolutional(
                filter_size=(3, 3),
                num_filters=512,
                name='conv13'),
            SpatialBatchNormalization(name='batch_norm13'),
            Rectifier(),
            Convolutional(
                filter_size=(3, 3),
                step=(2, 2),
                num_filters=512,
                name='conv14'),
            SpatialBatchNormalization(name='batch_norm14'),
            Rectifier(),
        ]
    if(depth > 7):
        layers = layers + [
            Convolutional(
                filter_size=(3, 3),
                num_filters=512,
                name='conv15'),
            SpatialBatchNormalization(name='batch_norm15'),
            Rectifier(),
            Convolutional(
                filter_size=(3, 3),
                step=(2, 2),
                num_filters=512,
                name='conv16'),
            SpatialBatchNormalization(name='batch_norm16'),
            Rectifier(),
        ]

    print("creating model of depth {} with {} layers".format(depth, len(layers)))

    convnet = ConvolutionalSequence(
        layers=layers,
        num_channels=3,
        image_size=(image_size, image_size),
        use_bias=False,
        weights_init=IsotropicGaussian(0.033),
        biases_init=Constant(0),
        name='convnet')
    convnet.initialize()

    mlp = BatchNormalizedMLP(
        activations=[Rectifier(), Logistic()],
        dims=[numpy.prod(convnet.get_dim('output')), 1000, 64],
        weights_init=IsotropicGaussian(0.033),
        biases_init=Constant(0),
        name='mlp')
    mlp.initialize()

    return convnet, mlp, len(layers)