def run(experiment_id, restore_path=None, image_size=(None, None), image=DEFAULT_INFERENCE_TEST_DATA_IMAGE, config_file=None): environment.init(experiment_id) config = config_util.load_from_experiment() if config_file: config = config_util.merge(config, config_util.load(config_file)) config.BATCH_SIZE = 1 config.NETWORK.BATCH_SIZE = 1 config.DATASET.BATCH_SIZE = 1 if list(image_size) != [None, None]: config.IMAGE_SIZE = list(image_size) config.NETWORK.IMAGE_SIZE = list(image_size) # override pre processes image size. if config.PRE_PROCESSOR: config.PRE_PROCESSOR.set_image_size(image_size) # override post processes image size. if config.POST_PROCESSOR: config.POST_PROCESSOR.set_image_size(image_size) print("Override IMAGE_SIZE", config.IMAGE_SIZE) executor.init_logging(config) config_util.display(config) return _export(config, restore_path, image)
def run(input_dir, output_dir, experiment_id, config_file, restore_path, save_images): environment.init(experiment_id) config = config_util.load_from_experiment() if config_file: config = config_util.merge(config, config_util.load(config_file)) if not os.path.isdir(input_dir): raise FileNotFoundError( "Input directory not found: '{}'".format(input_dir)) if restore_path is None: restore_file = search_restore_filename(environment.CHECKPOINTS_DIR) restore_path = os.path.join(environment.CHECKPOINTS_DIR, restore_file) print("Restore from {}".format(restore_path)) if not os.path.exists("{}.index".format(restore_path)): raise FileNotFoundError( "Checkpoint file not found: '{}'".format(restore_path)) print("---- start predict ----") _run(input_dir, output_dir, config, restore_path, save_images) print("---- end predict ----")
def run(experiment_id, restore_path, config_file, bit, unquant_layers): if config_file is None and experiment_id is None: raise Exception("config_file or experiment_id are required") if experiment_id: environment.init(experiment_id) config = config_util.load_from_experiment() if config_file: config = config_util.merge(config, config_util.load(config_file)) if restore_path is None: restore_file = executor.search_restore_filename(environment.CHECKPOINTS_DIR) restore_path = os.path.join(environment.CHECKPOINTS_DIR, restore_file) if not os.path.exists("{}.index".format(restore_path)): raise Exception("restore file {} dont exists.".format(restore_path)) else: experiment_id = "profile" environment.init(experiment_id) config = config_util.load(config_file) config.BATCH_SIZE = 1 config.NETWORK.BATCH_SIZE = 1 config.DATASET.BATCH_SIZE = 1 executor.init_logging(config) config_util.display(config) _profile(config, restore_path, bit, unquant_layers)
def main(config_file, experiment_id, restore_path, output_dir): environment.init(experiment_id) config = config_util.load_from_experiment() if config_file: config = config_util.merge(config, config_util.load(config_file)) executor.init_logging(config) config_util.display(config) evaluate(config, restore_path, output_dir)
def main(network, dataset, config_file, experiment_id, restore_path, output_dir): environment.init(experiment_id) config = config_util.load_from_experiment() if config_file: config = config_util.merge(config, config_util.load(config_file)) if network: network_class = module_loader.load_network_class(network) config.NETWORK_CLASS = network_class if dataset: dataset_class = module_loader.load_dataset_class(dataset) config.DATASET_CLASS = dataset_class executor.init_logging(config) config_util.display(config) evaluate(config, restore_path, output_dir)
def _run(config_file, experiment_id, restore_path, image_size, step_size, cpu): if experiment_id: environment.init(experiment_id) config = config_util.load_from_experiment() if config_file: config = config_util.merge(config, config_util.load(config_file)) if restore_path is None: restore_file = executor.search_restore_filename( environment.CHECKPOINTS_DIR) restore_path = os.path.join(environment.CHECKPOINTS_DIR, restore_file) if not os.path.exists("{}.index".format(restore_path)): raise Exception( "restore file {} dont exists.".format(restore_path)) else: experiment_id = "measure_latency" environment.init(experiment_id) config = config_util.load(config_file) config.BATCH_SIZE = 1 config.NETWORK.BATCH_SIZE = 1 config.DATASET.BATCH_SIZE = 1 if list(image_size) != [None, None]: config.IMAGE_SIZE = list(image_size) config.NETWORK.IMAGE_SIZE = list(image_size) # override pre processes image size. if config.PRE_PROCESSOR: config.PRE_PROCESSOR.set_image_size(image_size) # override post processes image size. if config.POST_PROCESSOR: config.POST_PROCESSOR.set_image_size(image_size) print("Override IMAGE_SIZE", config.IMAGE_SIZE) executor.init_logging(config) config_util.display(config) overall_times, only_network_times = _measure_time(config, restore_path, step_size) overall_times = np.array(overall_times) only_network_times = np.array(only_network_times) # list of physical_device_desc devices = [ device.physical_device_desc for device in device_lib.list_local_devices() if device.physical_device_desc ] message = """ ---- measure latency result ---- total number of execution (number of samples): {} network: {} use gpu by network: {} image size: {} devices: {} * overall (include pre-post-process which execute on cpu) total time: {:.4f} msec latency mean (SD=standard deviation): {:.4f} (SD={:.4f}) msec, min: {:.4f} msec, max: {:.4f} msec FPS mean (SD=standard deviation): {:.4f} (SD={:.4f}), min: {:.4f}, max: {:.4f} * network only (exclude pre-post-process): total time: {:.4f} msec latency mean (SD=standard deviation): {:.4f} (SD={:.4f}) msec, min: {:.4f} msec, max: {:.4f} msec FPS mean (SD=standard deviation): {:.4f} (SD={:.4f}), min: {:.4f}, max: {:.4f} ---- measure latency result ---- """.format( step_size, config.NETWORK_CLASS.__name__, not cpu, config.IMAGE_SIZE, devices, # overall np.sum(overall_times) * 1000, # latency np.mean(overall_times) * 1000, np.std(overall_times) * 1000, np.min(overall_times) * 1000, np.max(overall_times) * 1000, # FPS np.mean(1 / overall_times), np.std(1 / overall_times), np.min(1 / overall_times), np.max(1 / overall_times), # network only np.sum(only_network_times) * 1000, # latency np.mean(only_network_times) * 1000, np.std(only_network_times) * 1000, np.min(only_network_times) * 1000, np.max(only_network_times) * 1000, # FPS np.mean(1 / only_network_times), np.std(1 / only_network_times), np.min(1 / only_network_times), np.max(1 / only_network_times), ) print(message)