예제 #1
0
def test_live_fit_plot(RE, hw):
    try:
        import lmfit
    except ImportError:
        raise pytest.skip('requires lmfit')

    def gaussian(x, A, sigma, x0):
        return A * np.exp(-(x - x0)**2 / (2 * sigma**2))

    model = lmfit.Model(gaussian)
    init_guess = {
        'A': 2,
        'sigma': lmfit.Parameter('sigma', 3, min=0),
        'x0': -0.2
    }
    livefit = LiveFit(model,
                      'det', {'x': 'motor'},
                      init_guess,
                      update_every=50)
    lfplot = LiveFitPlot(livefit, color='r')
    lplot = LivePlot('det', 'motor', ax=plt.gca(), marker='o', ls='none')
    RE(scan([hw.det], hw.motor, -1, 1, 50), [lplot, lfplot])
    expected = {'A': 1, 'sigma': 1, 'x0': 0}
    for k, v in expected.items():
        assert np.allclose(livefit.result.values[k], v, atol=1e-6)
예제 #2
0
    def my_plan():
        motor = hw.motor
        det = hw.det

        motor.delay = 1

        plan = bp.scan([det], motor, -5, 5, 25)
        plan = subs_wrapper(bp.scan([det], motor, -5, 5, 25),
                            LivePlot(det.name, motor.name))
        return (yield from plan)
예제 #3
0
def test_live_plotter(RE, hw):
    RE.ignore_callback_exceptions = False
    try:
        import matplotlib.pyplot as plt
        del plt
    except ImportError as ie:
        pytest.skip("Skipping live plot test because matplotlib is not installed."
                    "Error was: {}".format(ie))

    my_plotter = LivePlot('det', 'motor')
    assert RE.state == 'idle'
    RE(stepscan(hw.det, hw.motor), {'all': my_plotter})
    assert RE.state == 'idle'
    xlen = len(my_plotter.x_data)
    assert xlen > 0
    ylen = len(my_plotter.y_data)
    assert xlen == ylen
    RE.ignore_callback_exceptions = True
예제 #4
0
import numpy as np
import lmfit
from bluesky.plans import scan
from ophyd.sim import motor, noisy_det
from bluesky.callbacks import LiveFit
from bluesky.callbacks.mpl_plotting import LivePlot, LiveFitPlot
from bluesky import RunEngine

RE = RunEngine({})


def gaussian(x, A, sigma, x0):
    return A * np.exp(-(x - x0)**2 / (2 * sigma**2))


model = lmfit.Model(gaussian)
init_guess = {'A': 2, 'sigma': lmfit.Parameter('sigma', 3, min=0), 'x0': -0.2}

import matplotlib.pyplot as plt
fig, ax = plt.subplots()
lf = LiveFit(model, 'noisy_det', {'x': 'motor'}, init_guess)
lfp = LiveFitPlot(lf, ax=ax, color='r')
lp = LivePlot('noisy_det', 'motor', ax=ax, marker='o', linestyle='none')

RE(scan([noisy_det], motor, -1, 1, 50), [lfp, lp])
plt.draw()
예제 #5
0
from bluesky import RunEngine
from bluesky.plans import scan
from ophyd.sim import det, motor
from bluesky.callbacks.mpl_plotting import LivePlot
RE = RunEngine({})
RE(scan([det], motor, -5, 5, 30),
   LivePlot('det', 'motor', marker='x', markersize=10, color='red'))
예제 #6
0
from bluesky import RunEngine
from bluesky.plans import scan
from ophyd.sim import det, motor
from bluesky.callbacks.mpl_plotting import LivePlot
RE = RunEngine({})
RE(scan([det], motor, -5, 5, 30), LivePlot('det', 'motor'))
예제 #7
0
파일: plans.py 프로젝트: xubo0321/tutorials
def rocking_curve(start=-0.10, stop=0.10, nsteps=101, choice="peak"):
    """Perform a relative scan of the DCM 2nd crystal pitch around the current
    position to find the peak of the crystal rocking curve.  Begin by opening
    the hutch slits to 3 mm. At the end, move to the position of maximum
    intensity on I0, then return to the hutch slits to their original height.
    Input:
      start:    (float)  starting position relative to current  [-0.1]
      end:      (float)  ending position relative to current    [0.1]
      nsteps:   (int)    number of steps                        [101]
      choice:   (string) 'peak', fit' or 'com' (center of mass) ['peak']
    If choice is fit, the fit is performed using the
    SkewedGaussianModel from lmfit, which works pretty well for this
    measurement at BMM.  The line shape is a bit skewed due to the
    convolution with the slightly misaligned entrance slits.
    """

    # Cache the data here as it is collected so we can examine it here and use
    # it to make decisions.
    src = SingleRunCache()

    @subs_decorator(LivePlot("I0", pitch.name, ax=plt.gca()))
    @subs_decorator(src.callback)
    def scan_dcm_pitch():
        line1 = "%s, %s, %.3f, %.3f, %d -- starting at %.3f\n" % (
            pitch.name,
            "I0",
            start,
            stop,
            nsteps,
            pitch.readback.get(),
        )
        uid = yield from rel_scan([I0], pitch, start, stop, nsteps)

        # The data that we just acquired has been cached in memory by src.
        # Access it as a pandas DataFrame so that we can conveniently do some
        # math on it.
        run = src.retrieve()
        t = run.primary.read().to_dataframe()
        if choice.lower() == "com":
            signal = numpy.array(t["I0"])
            position = com(signal)
            top = t['pitch'].iloc[position]
        elif choice.lower() == "fit":
            signal = numpy.array(t["I0"])
            pitch_ = numpy.array(t["pitch"])
            mod = SkewedGaussianModel()
            pars = mod.guess(signal, x=pitch_)
            out = mod.fit(signal, pars, x=pitch_)
            print(out.fit_report(min_correl=0))
            out.plot()
            top = out.params["center"].value
        else:
            signal = t['I0']
            position = peak(signal)
            top = t[pitch.name][position]

        print(
            "rocking curve scan: %s\tuid = %s, scan_id = %d"
            % (line1, uid, run.metadata["start"]["scan_id"])
        )
        print(f"Found and moved to peak at {top:.3} via method {choice}")
        yield from mv(pitch, top)

    yield from scan_dcm_pitch()