예제 #1
0
    def __init__(self, init_value=0, drift_target_weights=None,
                 change_rate_weights=None, move_freq_weights=None):
        """
        Args:
            init_value (float):
            drift_target_weights (list): a list of 2-tuple weights
            change_rate_weights (list): a list of 2-tuple weights
            move_freq_weights (list): a list of 2-tuple weights
        """
        # TODO: improve docs
        # Set up amplitude
        self._raw_value = None
        self.value = init_value
        if drift_target_weights is None:
            self.drift_target_weights = [
                (-1, 1), (0.02, 6), (0.2, 1), (0.3, 0)]
        else:
            self.drift_target_weights = drift_target_weights
        self.drift_target = rand.weighted_rand(self.drift_target_weights)

        if change_rate_weights is None:
            self.change_rate_weights = [(0.00001, 100), (0.001, 5), (0.01, 1)]
        else:
            self.change_rate_weights = change_rate_weights
        self.change_rate = rand.weighted_rand(self.change_rate_weights)

        if move_freq_weights is None:
            self.move_freq_weights = [(0.000001, 10), (0.01, 1)]
        else:
            self.move_freq_weights = move_freq_weights
        self.move_freq = rand.weighted_rand(self.move_freq_weights)
예제 #2
0
    def re_roll_behaviors(self):
        """
        Re-randomly-generate behavior attributes.

        Returns: None
        """
        self.move_freq = rand.weighted_rand(self.move_freq_weights)
        self.drift_target = rand.weighted_rand(self.drift_target_weights)
        self.change_rate = rand.weighted_rand(self.change_rate_weights)
예제 #3
0
    def get(self):
        """
        Get an ``int`` value in the probability space of the object.

        Returns: int
        """
        return rand.weighted_rand(self.weights, round_result=True)
예제 #4
0
    def apply_noise(self, noise_weights=None, uniform_amount=0.1):
        """
        Add noise to every link in the network.

        Can use either a ``uniform_amount`` or a ``noise_weight`` weight
        profile. If ``noise_weight`` is set, ``uniform_amount`` will be
        ignored.

        Args:
            noise_weights (Optional[(amount, weight)]): a list of weights
                describing the noise to be added to each link
            uniform_amount (float): the maximum amount of uniform noise
                to be applied if ``noise_weights`` is not set

        Returns: None
        """
        # Main node loop
        for node in self.node_list:
            for link in node.link_list:
                if noise_weights is not None:
                    noise_amount = round(weighted_rand(noise_weights), 3)
                else:
                    noise_amount = round(random.uniform(
                        0, link.weight * uniform_amount), 3)
                link.weight += noise_amount
예제 #5
0
파일: soft.py 프로젝트: ajyoon/blur
    def get(self):
        """
        Get an ``int`` value in the probability space of the object.

        Returns: int
        """
        return rand.weighted_rand(self.weights, round_result=True)
예제 #6
0
파일: soft.py 프로젝트: ajyoon/blur
    def get(self):
        """
        Get a ``float`` value in the probability space of the object.

        Returns:
            float: A value between the lowest and highest outcomes
            in ``self.weights``
        """
        return rand.weighted_rand(self.weights, round_result=False)
예제 #7
0
    def get(self):
        """
        Get a ``float`` value in the probability space of the object.

        Returns:
            float: A value between the lowest and highest outcomes
            in ``self.weights``
        """
        return rand.weighted_rand(self.weights, round_result=False)
예제 #8
0
파일: waves.py 프로젝트: ajyoon/blur
def build_chunk(oscillators):
    """
    Build an audio chunk and progress the oscillator states.

    Args:
        oscillators (list): A list of oscillator.Oscillator objects
            to build chunks from

    Returns:
        str: a string of audio sample bytes ready to be written to a wave file
    """
    step_random_processes(oscillators)
    subchunks = []
    for osc in oscillators:
        osc.amplitude.step_amp()
        osc_chunk = osc.get_samples(config.CHUNK_SIZE)
        if osc_chunk is not None:
            subchunks.append(osc_chunk)
    if len(subchunks):
        new_chunk = sum(subchunks)
    else:
        new_chunk = numpy.zeros(config.CHUNK_SIZE)
    # If we exceed the maximum amplitude, handle it gracefully
    chunk_amplitude = amplitude.find_amplitude(new_chunk)
    if chunk_amplitude > config.MAX_AMPLITUDE:
        # Normalize the amplitude chunk to mitigate immediate clipping
        new_chunk = amplitude.normalize_amplitude(new_chunk,
                                                  config.MAX_AMPLITUDE)
        # Pick some of the offending oscillators (and some random others)
        # and lower their drift targets
        avg_amp = (sum(osc.amplitude.value for osc in oscillators) /
                   len(oscillators))
        for osc in oscillators:
            if (osc.amplitude.value > avg_amp and rand.prob_bool(0.1) or
                    rand.prob_bool(0.01)):
                osc.amplitude.drift_target = rand.weighted_rand(
                    [(-5, 1), (0, 10)])
                osc.amplitude.change_rate = rand.weighted_rand(
                    osc.amplitude.change_rate_weights)
    return new_chunk.astype(config.SAMPLE_DATA_TYPE).tostring()
예제 #9
0
파일: waves.py 프로젝트: ajyoon/blur
def build_chunk(oscillators):
    """
    Build an audio chunk and progress the oscillator states.

    Args:
        oscillators (list): A list of oscillator.Oscillator objects
            to build chunks from

    Returns:
        str: a string of audio sample bytes ready to be written to a wave file
    """
    step_random_processes(oscillators)
    subchunks = []
    for osc in oscillators:
        osc.amplitude.step_amp()
        osc_chunk = osc.get_samples(config.CHUNK_SIZE)
        if osc_chunk is not None:
            subchunks.append(osc_chunk)
    if len(subchunks):
        new_chunk = sum(subchunks)
    else:
        new_chunk = numpy.zeros(config.CHUNK_SIZE)
    # If we exceed the maximum amplitude, handle it gracefully
    chunk_amplitude = amplitude.find_amplitude(new_chunk)
    if chunk_amplitude > config.MAX_AMPLITUDE:
        # Normalize the amplitude chunk to mitigate immediate clipping
        new_chunk = amplitude.normalize_amplitude(new_chunk,
                                                  config.MAX_AMPLITUDE)
        # Pick some of the offending oscillators (and some random others)
        # and lower their drift targets
        avg_amp = (sum(osc.amplitude.value
                       for osc in oscillators) / len(oscillators))
        for osc in oscillators:
            if (osc.amplitude.value > avg_amp and rand.prob_bool(0.1)
                    or rand.prob_bool(0.01)):
                osc.amplitude.drift_target = rand.weighted_rand([(-5, 1),
                                                                 (0, 10)])
                osc.amplitude.change_rate = rand.weighted_rand(
                    osc.amplitude.change_rate_weights)
    return new_chunk.astype(config.SAMPLE_DATA_TYPE).tostring()
예제 #10
0
파일: amplitude.py 프로젝트: ajyoon/blur
 def __init__(self,
              init_value,
              drift_target_weights=None,
              change_rate_weights=None):
     """
     Args:
         init_value (float): The initial amplitude level
         drift_target_weights (list): a list of 2-tuple weights
         change_rate_weights (list): a list of 2-tuple weights
     """
     # Set up amplitude
     self._raw_value = None
     self.value = init_value
     if drift_target_weights is None:
         self.drift_target_weights = [(-1, 1), (0.02, 6), (0.2, 1),
                                      (0.3, 0)]
     else:
         self.drift_target_weights = drift_target_weights
     self.drift_target = rand.weighted_rand(self.drift_target_weights)
     if change_rate_weights is None:
         self.change_rate_weights = [(0.00001, 100), (0.001, 5), (0.01, 1)]
     else:
         self.change_rate_weights = change_rate_weights
     self.change_rate = rand.weighted_rand(self.change_rate_weights)
예제 #11
0
    def apply_noise(self, noise_weights=None, uniform_amount=0.1):
        """
        Add noise to every link in the network.

        Can use either a ``uniform_amount`` or a ``noise_weight`` weight
        profile. If ``noise_weight`` is set, ``uniform_amount`` will be
        ignored.

        Args:
            noise_weights (list): a list of weight tuples
                of form ``(float, float)`` corresponding to
                ``(amount, weight)`` describing the noise to be
                added to each link in the graph
            uniform_amount (float): the maximum amount of uniform noise
                to be applied if ``noise_weights`` is not set

        Returns: None

        Example:
            >>> from blur.markov.node import Node
            >>> node_1 = Node('One')
            >>> node_2 = Node('Two')
            >>> node_1.add_link(node_1, 3)
            >>> node_1.add_link(node_2, 5)
            >>> node_2.add_link(node_1, 1)
            >>> graph = Graph([node_1, node_2])
            >>> for link in graph.node_list[0].link_list:
            ...     print('{} {}'.format(link.target.value, link.weight))
            One 3
            Two 5
            >>> graph.apply_noise()
            >>> for link in graph.node_list[0].link_list:
            ...     print('{} {}'.format(
            ...         link.target.value, link.weight))       # doctest: +SKIP
            One 3.154
            Two 5.321
        """
        # Main node loop
        for node in self.node_list:
            for link in node.link_list:
                if noise_weights is not None:
                    noise_amount = round(weighted_rand(noise_weights), 3)
                else:
                    noise_amount = round(
                        random.uniform(0, link.weight * uniform_amount), 3)
                link.weight += noise_amount
예제 #12
0
파일: graph.py 프로젝트: ajyoon/blur
    def apply_noise(self, noise_weights=None, uniform_amount=0.1):
        """
        Add noise to every link in the network.

        Can use either a ``uniform_amount`` or a ``noise_weight`` weight
        profile. If ``noise_weight`` is set, ``uniform_amount`` will be
        ignored.

        Args:
            noise_weights (list): a list of weight tuples
                of form ``(float, float)`` corresponding to
                ``(amount, weight)`` describing the noise to be
                added to each link in the graph
            uniform_amount (float): the maximum amount of uniform noise
                to be applied if ``noise_weights`` is not set

        Returns: None

        Example:
            >>> from blur.markov.node import Node
            >>> node_1 = Node('One')
            >>> node_2 = Node('Two')
            >>> node_1.add_link(node_1, 3)
            >>> node_1.add_link(node_2, 5)
            >>> node_2.add_link(node_1, 1)
            >>> graph = Graph([node_1, node_2])
            >>> for link in graph.node_list[0].link_list:
            ...     print('{} {}'.format(link.target.value, link.weight))
            One 3
            Two 5
            >>> graph.apply_noise()
            >>> for link in graph.node_list[0].link_list:
            ...     print('{} {}'.format(
            ...         link.target.value, link.weight))       # doctest: +SKIP
            One 3.154
            Two 5.321
        """
        # Main node loop
        for node in self.node_list:
            for link in node.link_list:
                if noise_weights is not None:
                    noise_amount = round(weighted_rand(noise_weights), 3)
                else:
                    noise_amount = round(random.uniform(
                        0, link.weight * uniform_amount), 3)
                link.weight += noise_amount
예제 #13
0
파일: waves.py 프로젝트: ajyoon/blur
def step_random_processes(oscillators):
    """
    Args:
        oscillators (list): A list of oscillator.Oscillator objects
            to operate on

    Returns: None
    """
    if not rand.prob_bool(0.01):
        return
    amp_bias_weights = [(0.001, 1), (0.1, 100), (0.15, 40), (1, 0)]
    # Find out how many oscillators should move
    num_moves = iching.get_hexagram('NAIVE') % len(oscillators)
    for i in range(num_moves):
        pair = [gram % len(oscillators)
                for gram in iching.get_hexagram('THREE COIN')]
        amplitudes = [(gram / 64) * rand.weighted_rand(amp_bias_weights)
                      for gram in iching.get_hexagram('THREE COIN')]
        oscillators[pair[0]].amplitude.drift_target = amplitudes[0]
        oscillators[pair[1]].amplitude.drift_target = amplitudes[1]
예제 #14
0
파일: test_rand.py 프로젝트: ajyoon/blur
    def test_normal_distribution(self):
        """
        Test the accuracy of ``rand.normal_distribution()``.

        Use the curve it creates to generate a large number of samples,
        and then calculate the real variance and mean of the resulting
        sample group and compare the two within a comfortable margin.
        """
        MEAN = -12
        VARIANCE = 2.5
        STANDARD_DEVIATION = math.sqrt(VARIANCE)
        SAMPLE_COUNT = 1000
        curve = rand.normal_distribution(MEAN, VARIANCE, weight_count=30)
        samples = [rand.weighted_rand(curve) for i in range(SAMPLE_COUNT)]
        samples_mean = sum(samples) / len(samples)
        samples_variance = (sum(
            (s - samples_mean)**2 for s in samples) / len(samples))
        mean_diff = abs(MEAN - samples_mean)
        variance_diff = abs(VARIANCE - samples_variance)
        self.assertLess(mean_diff, abs(MEAN / 4))
        self.assertLess(variance_diff, abs(VARIANCE / 4))
예제 #15
0
파일: test_rand.py 프로젝트: ajyoon/blur
    def test_weighted_rand_with_arbitrary_curve(self):
        """
        Test ``rand.weighted_rand()``.

        Find a large number of points from a randomly built weight distribution
        and comparing the distribution against the expectation using a crude
        histogram model.
        """
        MIN_X = -1000
        MIN_Y = 0
        MAX_X = 1000
        MAX_Y = 1000
        curve = [(random.randint(MIN_X, MAX_X), random.randint(MIN_Y, MAX_Y))
                 for i in range(30)]
        # Attach points to domain bounds at MIN_Y
        curve.append((MIN_X, MIN_Y))
        curve.append((MAX_X, MIN_Y))
        # Sort the points in the curve as this is a
        # requirement of _linear_interp()
        curve.sort(key=lambda p: p[0])

        BIN_WIDTH = 1
        bins = {b: 0 for b in range(MIN_X, MAX_X, BIN_WIDTH)}
        TEST_COUNT = 1000
        for i in range(TEST_COUNT):
            point = rand.weighted_rand(curve, round_result=False)
            # Match the found point to the closest bin to the left
            bins[int(math.floor(point / BIN_WIDTH) * BIN_WIDTH)] += 1
        # Make sure the binning is working as expected
        self.assertEqual(sum(values for i, values in bins.items()),
                         TEST_COUNT,
                         msg='This test itself is broken! '
                         'Not all rolled points were matched to a bin.')
        sum_probability = 0
        for bin_x in bins.keys():
            sum_probability += rand._linear_interp(curve, bin_x)
        for bin_x, count in bins.items():
            bin_probability = rand._linear_interp(curve, bin_x)
            expected_count = (bin_probability / sum_probability) * TEST_COUNT
            self.assertLess(abs(count - expected_count), TEST_COUNT / 10)
예제 #16
0
    def get(self):
        """
        Render the poem as an HTML string.

        Returns:
            str: the body of the poem in HTML
        """
        if rand.prob_bool(self.mutable_chance):
            # Render text from a markov graph derived from the source text
            word_list = []
            word_count = rand.weighted_rand(
                self.word_count_weights, round_result=True)
            word_graph = Graph.from_file(self.filepath, self.distance_weights)
            for i in range(word_count):
                word = word_graph.pick().get_value()
                word_list.append(word)
        else:
            # Otherwise, copy source contents literally
            source_file = open(self.filepath, 'r')
            word_list = source_file.read().split()
        # Combine words, process markups, and return HTML
        return self.render_markups(word_list)
예제 #17
0
    def test_weighted_rand_with_arbitrary_curve(self):
        """
        Test ``rand.weighted_rand()``.

        Find a large number of points from a randomly built weight distribution
        and comparing the distribution against the expectation using a crude
        histogram model.
        """
        MIN_X = -1000
        MIN_Y = 0
        MAX_X = 1000
        MAX_Y = 1000
        curve = [(random.randint(MIN_X, MAX_X), random.randint(MIN_Y, MAX_Y))
                 for i in range(30)]
        # Attach points to domain bounds at MIN_Y
        curve.append((MIN_X, MIN_Y))
        curve.append((MAX_X, MIN_Y))
        # Sort the points in the curve as this is a
        # requirement of _linear_interp()
        curve.sort(key=lambda p: p[0])

        BIN_WIDTH = 1
        bins = {b: 0 for b in range(MIN_X, MAX_X, BIN_WIDTH)}
        TEST_COUNT = 1000
        for i in range(TEST_COUNT):
            point = rand.weighted_rand(curve, round_result=False)
            # Match the found point to the closest bin to the left
            bins[int(math.floor(point / BIN_WIDTH) * BIN_WIDTH)] += 1
        # Make sure the binning is working as expected
        self.assertEqual(sum(values for i, values in bins.items()), TEST_COUNT,
                         msg='This test itself is broken! '
                             'Not all rolled points were matched to a bin.')
        sum_probability = 0
        for bin_x in bins.keys():
            sum_probability += rand._linear_interp(curve, bin_x)
        for bin_x, count in bins.items():
            bin_probability = rand._linear_interp(curve, bin_x)
            expected_count = (bin_probability / sum_probability) * TEST_COUNT
            self.assertLess(abs(count - expected_count), TEST_COUNT / 10)
예제 #18
0
파일: waves.py 프로젝트: ajyoon/blur
def step_random_processes(oscillators):
    """
    Args:
        oscillators (list): A list of oscillator.Oscillator objects
            to operate on

    Returns: None
    """
    if not rand.prob_bool(0.01):
        return
    amp_bias_weights = [(0.001, 1), (0.1, 100), (0.15, 40), (1, 0)]
    # Find out how many oscillators should move
    num_moves = iching.get_hexagram('NAIVE') % len(oscillators)
    for i in range(num_moves):
        pair = [
            gram % len(oscillators)
            for gram in iching.get_hexagram('THREE COIN')
        ]
        amplitudes = [(gram / 64) * rand.weighted_rand(amp_bias_weights)
                      for gram in iching.get_hexagram('THREE COIN')]
        oscillators[pair[0]].amplitude.drift_target = amplitudes[0]
        oscillators[pair[1]].amplitude.drift_target = amplitudes[1]
예제 #19
0
    def test_normal_distribution(self):
        """
        Test the accuracy of ``rand.normal_distribution()``.

        Use the curve it creates to generate a large number of samples,
        and then calculate the real variance and mean of the resulting
        sample group and compare the two within a comfortable margin.
        """
        MEAN = -12
        VARIANCE = 2.5
        STANDARD_DEVIATION = math.sqrt(VARIANCE)
        SAMPLE_COUNT = 600
        curve = rand.normal_distribution(MEAN, VARIANCE)
        samples = [rand.weighted_rand(curve) for i in range(SAMPLE_COUNT)]
        samples_mean = sum(samples) / len(samples)
        samples_variance = (
            sum((s - samples_mean) ** 2 for s in samples) /
            len(samples)
        )
        mean_diff = abs(MEAN - samples_mean)
        variance_diff = abs(VARIANCE - samples_variance)
        self.assertLess(mean_diff, abs(MEAN / 5))
        self.assertLess(variance_diff, abs(VARIANCE / 5))
from pprint import pformat
from random import randint

from blur import rand

# import basic (manually entered) data on the poems
from __poems_basic_preconfig import poems

if __name__ == '__main__':
    for poem in poems:
        # Decide the likelihood that a poem will be markov-ed on view
        # Manually entered data had mutable chances of 0, 0.5, and 1
        # For 3 basic categories of preference
        # (All but poem eight have a chance to be mutable)
        if poem['mutable_chance'] == 0 and poem['name'] != 'eight':
            poem['mutable_chance'] = rand.weighted_rand([(0, 100), (0.03, 10),
                                                         (0.15, 0)])
        elif poem['mutable_chance'] == 0.5:
            poem['mutable_chance'] = rand.weighted_rand(
                rand.normal_distribution(0.5, 0.8, 0, 1))
        else:
            poem['mutable_chance'] = rand.weighted_rand([(0.85, 0), (0.9, 10),
                                                         (1, 100)])
        poem['position_weight'] = rand.weighted_rand(
            rand.normal_distribution(poem['position_weight'], 3))
        # Build distance weights for markov graph derivation
        keys = [
            rand.weighted_rand(rand.normal_distribution(4, 30), True)
            for i in range(randint(10, 20))
        ]
        distance_weights = dict([
            (key,
예제 #21
0
파일: waves.py 프로젝트: ajyoon/blur
detune_base_pitches_weights = [(frequency_map[10], 50),
                               (frequency_map[0], 1),
                               (frequency_map[2], 30),
                               (frequency_map[3], 40),
                               (frequency_map[5], 80),
                               (frequency_map[7], 30),
                               (frequency_map[9], 20)]
octave_choice_weights = [(1/8, 20),
                         (1/4, 15),
                         (1/2, 10),
                         (1, 5),
                         (2, 5),
                         (4, 5)]
# Find detuned pitches
pitches = [((rand.weighted_choice(detune_base_pitches_weights) +  # Base pitch
             rand.weighted_rand(detune_weights)) *                # Detune
            rand.weighted_choice(octave_choice_weights))          # Set Octave
           for i in range(50)]
amp_multiplier_weights = [(0.05, 10), (0.2, 2), (0.7, 1)]

for pitch in pitches:
    osc_list.append(
        oscillator.Oscillator(
            pitch,
            amplitude.AmplitudeHandler(
                init_value=0,
                drift_target_weights=[
                    (-2, 30), (0.02, 8), (0.05, 2), (0.1, 0.1), (0.3, 0)],
                change_rate_weights=[
                    (0.00001, 12000),
                    (0.0001, 100),
예제 #22
0
파일: test_rand.py 프로젝트: ajyoon/blur
 def test_weighted_rand_and_choice_with_one_weight_equivalent(self):
     weight_list = [('The Only Weight', 2)]
     self.assertEqual(rand.weighted_rand(weight_list),
                      rand.weighted_choice(weight_list))
예제 #23
0
파일: test_rand.py 프로젝트: ajyoon/blur
 def test_weighted_rand_and_choice_with_one_weight_equivalent(self):
     weight_list = [('The Only Weight', 2)]
     self.assertEqual(rand.weighted_rand(weight_list),
                      rand.weighted_choice(weight_list))
예제 #24
0
 def test_weighted_rand_with_one_weight_returns_it(self):
     weight_list = [('The Only Weight', 2)]
     expected_result = weight_list[0][0]
     self.assertEqual(rand.weighted_rand(weight_list), expected_result)
예제 #25
0
    def render_markups(self, word_list):
        """
        Render a list of words and markups to html with automatic line breaks.

        This method performs several processing steps preparing the poem text
        for HTML delivery. It:
            * Converts `---` to stochastic length dashes in the form of empty
              `<span class="variable-length-dash"></span>` tags
            * Converts `|||` to stochastic height line breaks in the form of
              empty `<span class="variable-height-break"></span>` tags
            * Spontaneously inserts horizontal blank space between words in the
              form of empty `<span class="horizontal-blank-space"></span>` tags
            * Calculates the position of line breaks and renders them as divs
              in the form `<div class="poem-line"> ... </div>`

        Line breaks are triggered after every word which exceeds
        `LINE_LENGTH`. This character limit ignores HTML tags,
        allowing lines containing spans (variable-length-dash or
        horizontal-blank-space) to intentionally visually exceed the apparent
        right edge of the poem.

        Args:
            word_list (list[str]): The list of words (as well as punctuation
                marks and markups) to render.

        Returns:
            str: The contents of `word_list` rendered as HTML
        """
        working_text = word_list[:]  # Copy of word_list to avoid side-effects
        lines = []                   # List of lines in the generated poem
        current_line = []            # List of words in the current line
        visible_char_count = 0       # Number of visible chars in current line

        for word in working_text:
            if word == '---':
                # Render triple dashes to variable length visible dashes
                # (in the form of inline-block spans)
                dash_length = rand.weighted_rand(self.dash_length_weights)
                word = variable_length_dash(dash_length)
            elif word == '|||':
                # Render triple pipes as variable height breaks
                # (in the form of fixed-height spans)
                y_gap = rand.weighted_rand(
                        self.y_gap_height_weights)
                word = variable_height_break(y_gap)
            else:
                # Otherwise, the word will be rendered literally as visible
                # text, so count it toward the visible character count used
                # in placing line breaks
                visible_char_count += len(word)

            # Roll to insert x-axis gaps
            if rand.prob_bool(self.x_gap_freq):
                x_gap = rand.weighted_rand(self.x_gap_length_weights)
                # Sometimes place space before word, sometimes after (50/50)
                word = horizontal_blank_space(x_gap) + word
            # Break lines when LINE_LENGTH is exceeded
            if visible_char_count > LINE_LENGTH:
                visible_char_count = 0
                lines.append(''.join(current_line))
                current_line = []
            # Handle spaces appropriately for punctuation marks
            if word in PUNCTUATIONS:
                current_line.append(word)
            else:
                current_line.append(' ' + word)
        # Attach final line
        if current_line:
            lines.append(''.join(current_line))

        return (''.join((surround_with_tag(line, 'div', 'class="poem-line"')
                         for line in lines)))
예제 #26
0
 def __init__(self,
              filename,
              immutable_id,
              title='',
              mutable_chance=None,
              position_weight=None,
              distance_weights=None,
              word_count_weights=None,
              gap_before_weights=None,
              left_pad_weights=None,
              x_gap_freq_weights=None,
              x_gap_length_weights=None,
              y_gap_height_weights=None,
              dash_length_weights=None,
              ):
     """
     Args:
         filename (str): Name of text file containing the poem source
             located in `SOURCE_DIR`
         title (str): Title of the poem
         immutable_id (int): The immutable unique ID of this poem.
             Unlike `title`, this should not be subject to change by
             random processes.
         mutable_chance (float): 0-1 probability to be mutable
         distance_weights (dict): Dict of distance weights to be
             used in rand.from_file()
         position_weight (list[tuple]): Weight for position in the
             book order. Higher values relative to the values in the other
             poems indicates a stronger likelihood to appear near the
             beginning
         word_count_weights (list[tuple]): List of weight tuples for
             how many words will appear in the poem if the poem is mutable
         gap_before_weights (list[tuple]): List of weight tuples for
             how much space should appear before the poem, in em's.
         left_pad_weights (list[tuple]): List of weight tuples for
             how far the poem should be padded on the left,
             in device-width %.
         x_gap_freq_weights (list[tuple]): List of weight tuples for how
             frequently x-axis gaps should be inserted between words in
             the rendered poem. On initialization, this value is used
             to calculate `self.x_gap_freq`, which is the 0-1 probability
             for an x-axis gap to be inserted between any two given words.
         x_gap_length_weights (list[tuple): List of weight tuples for the
             length of inserted x-axis gaps, in em's.
         y_gap_height_weights (list[tuple): List of weight tuples for how
             tall inserted y-axis gaps should be, in em's.
         dash_length_weights (list[tuple]): List of weight tuples for
             the length of dashes triggered by `---` marks in the
             source text.
     """
     self.immutable_id = immutable_id
     self.title = title
     self.filepath = os.path.join(SOURCE_DIR, filename)
     self.mutable_chance       = (mutable_chance
                                  if mutable_chance
                                  else _default_mutable_chance)
     self.distance_weights     = (distance_weights
                                  if distance_weights
                                  else _default_distance_weights)
     self.position_weight      = (position_weight
                                  if position_weight
                                  else _default_position_weight)
     self.word_count_weights   = (word_count_weights
                                  if word_count_weights
                                  else _default_word_count_weights)
     self.x_gap_length_weights = (x_gap_length_weights
                                  if x_gap_length_weights
                                  else _default_x_gap_length_weights)
     self.y_gap_height_weights = (y_gap_height_weights
                                  if y_gap_height_weights
                                  else _default_y_gap_height_weights)
     self.dash_length_weights  = (dash_length_weights
                                  if dash_length_weights
                                  else _default_dash_length_weights)
     # Some args are used to calculate attributes on init
     self.gap_before = rand.weighted_rand(
             gap_before_weights if gap_before_weights
             else _default_gap_before_weights)
     self.left_pad = rand.weighted_rand(
             left_pad_weights if left_pad_weights
             else _default_left_pad_weights)
     self.x_gap_freq = rand.weighted_rand(
             x_gap_freq_weights if x_gap_freq_weights
             else _default_x_gap_freq_weights)
예제 #27
0
파일: waves.py 프로젝트: ajyoon/blur
                                           (0.3, 1), (0.4, 0)
                                       ])))

# Initialize softer oscillators slightly out of tune with consonant pitches
detune_weights = rand.normal_distribution(0, 20)
detune_base_pitches_weights = [(frequency_map[10], 50), (frequency_map[0], 1),
                               (frequency_map[2], 30), (frequency_map[3], 40),
                               (frequency_map[5], 80), (frequency_map[7], 30),
                               (frequency_map[9], 20)]
octave_choice_weights = [(1 / 8, 20), (1 / 4, 15), (1 / 2, 10), (1, 5), (2, 5),
                         (4, 5)]
# Find detuned pitches
pitches = [
    ((
        rand.weighted_choice(detune_base_pitches_weights) +  # Base pitch
        rand.weighted_rand(detune_weights)) *  # Detune
     rand.weighted_choice(octave_choice_weights))  # Set Octave
    for i in range(50)
]
amp_multiplier_weights = [(0.05, 10), (0.2, 2), (0.7, 1)]

for pitch in pitches:
    osc_list.append(
        oscillator.Oscillator(
            pitch,
            amplitude.AmplitudeHandler(
                init_value=0,
                drift_target_weights=[(-2, 30), (0.02, 8), (0.05, 2),
                                      (0.1, 0.1), (0.3, 0)],
                change_rate_weights=[(0.00001, 12000), (0.0001, 100),
                                     (0.001, 10)],
예제 #28
0
파일: test_rand.py 프로젝트: ajyoon/blur
 def test_weighted_rand_with_one_weight_returns_it(self):
     weight_list = [('The Only Weight', 2)]
     expected_result = weight_list[0][0]
     self.assertEqual(rand.weighted_rand(weight_list), expected_result)