def build_net(): net = NetworkBuilder("slice") net.add_nodes( N=5, pop_name='Scnn1a', synapse_model='a', firing_rate=firing_rate, model_type='biophysical', model_template='ctdb:Biophys1.hoc', dynamics_params='472363762_fit.json', morphology='Scnn1a-Tg3-Cre_Ai14_IVSCC_-177300.01.02.01_473845048_m.swc', rotation_angle_zaxis=-3.646878266, model_processing='aibs_perisomatic,extracellular') net.add_nodes( N=5, pop_name='Scnn1a', synapse_model='b', firing_rate=firing_rate, model_type='biophysical', model_template='ctdb:Biophys1.hoc', model_processing='aibs_perisomatic,extracellular', dynamics_params='472363762_fit.json', morphology='Scnn1a-Tg3-Cre_Ai14_IVSCC_-177300.01.02.01_473845048_m.swc', rotation_angle_zaxis=-3.646878266) net.build() net.save_nodes(nodes_file_name='network/slice_nodes.h5', node_types_file_name='network/slice_node_types.csv') return net
def build_sim(): from bmtk.builder.networks import NetworkBuilder # My all active-model (does not work): #Model ID 496497595 #Cell ID 487667205 # Other perisomatic model (available on Allen Brain Institute - CellTypes): #Model ID 491623973 #Cell ID 490387590 print('BMTK import success') net = NetworkBuilder('mcortex') print('Network builder initiated') # Testing other models: # Surprise, surprise, this does not work... net.add_nodes(cell_name='Pvalb_490387590_m', model_type='biophysical', model_template='ctdb:Biophys1.hoc', model_processing='aibs_perisomatic', dynamics_params='491623973_fit.json', morphology='Pvalb_490387590_m.swc') ''' # Standard net.add_nodes(cell_name='Scnn1a_473845048', potental='exc', model_type='biophysical', model_template='ctdb:Biophys1.hoc', model_processing='aibs_perisomatic', dynamics_params='472363762_fit.json', morphology='Scnn1a_473845048_m.swc') ''' print('Node added') net.build() net.save_nodes(output_dir='network') for node in net.nodes(): print(node) print('Node printed') from bmtk.utils.sim_setup import build_env_bionet print('Setting environment') build_env_bionet( base_dir='sim_ch01', # Where to save the scripts and config files network_dir='network', # Location of directory containing network files tstop=1200.0, dt=0.1, # Run a simulation for 2000 ms at 0.1 ms intervals report_vars=[ 'v' ], # Tells simulator we want to record membrane potential and calcium traces current_clamp={ # Creates a step current from 500.ms to 1500.0 ms 'amp': 0.61, # 0.12#0.610 'delay': 100.0, # 100, #500 'duration': 1000.0 }, include_examples=True, # Copies components files compile_mechanisms=True # Will try to compile NEURON mechanisms ) print('Build done')
def build_l4(): net = NetworkBuilder("V1/L4") net.add_nodes(N=1, pop_name='DG_GC', node_type_id=478230220, positions=[(28.753, -364.868, -161.705)], #tuning_angle=[0.0, 25.0], rotation_angle_yaxis=[3.55501], #location='VisL4', ei='e', level_of_detail='biophysical', params_file='478230220.json', morphology_file='478230220.swc', rotation_angle_zaxis=-3.646878266, set_params_function='Biophys1') net.build() net.save_nodes(nodes_file_name='output/v1_nodes.h5', node_types_file_name='output/v1_node_types.csv') # net.save_edges(edges_file_name='output/v1_v1_edges.h5', edge_types_file_name='output/v1_v1_edge_types.csv') return net
import numpy as np from bmtk.builder.networks import NetworkBuilder import math import random random.seed(42) output_dir='network' ####################################################################### ##################### Create the cells ################################ ####################################################################### print("\nCreating Cells") # Build the main network net = NetworkBuilder('LUT') # Specify number of cells in each population # numPUDaff = 1 numPelaff = 1 numINmplus = 1 numINmminus = 1 numIND = 1 numFB = 1 numSPN = 1 # Create the nodes ---------------------------------------- net.add_nodes(N=numPelaff, pop_name='Pelaff',model_type='biophysical',model_template='hoc:LIF_adapt',morphology=None) net.add_nodes(N=numPUDaff, pop_name='PUDaff',model_type='biophysical',model_template='hoc:LIF_adapt',morphology=None) net.add_nodes(N=numINmplus, pop_name='INmplus',model_type='biophysical',model_template='hoc:LIF_adapt',morphology=None) net.add_nodes(N=numINmminus, pop_name='INmminus',model_type='biophysical',model_template='hoc:LIF_adapt',morphology=None) net.add_nodes(N=numIND, pop_name='IND',model_type='biophysical',model_template='hoc:LIF_adapt',morphology=None)
from bmtk.builder.networks import NetworkBuilder net1 = NetworkBuilder('hco_net') net1.add_nodes(N=1, cell_name='HCOCell1', model_type='biophysical', model_template='hoc:HCOcell', morphology='blank.swc' ) net1.add_nodes(N=1, cell_name='HCOCell2', model_type='biophysical', model_template='hoc:HCOcell', morphology='blank.swc' ) net1.add_edges(source={'cell_name': 'HCOCell1'}, target={'cell_name':'HCOCell2'}, connection_rule=1, syn_weight=40.0e-02, dynamics_params='GABA_InhToInh.json', model_template='Exp2Syn', delay=0.0, target_sections=["soma"], distance_range=[0,999]) net1.add_edges(source={'cell_name': 'HCOCell2'}, target={'cell_name':'HCOCell1'}, connection_rule=1, syn_weight=40.0e-02,
import numpy as np from bmtk.builder.networks import NetworkBuilder from bmtk.builder.aux.node_params import positions_columinar from bmtk.builder.aux.edge_connectors import distance_connector """Create Nodes""" net = NetworkBuilder("V1") net.add_nodes(N=80, # Create a population of 80 neurons positions=positions_columinar(N=80, center=[0, 50.0, 0], max_radius=30.0, height=100.0), pop_name='Scnn1a', location='VisL4', ei='e', # optional parameters model_type='point_process', # Tells the simulator to use point-based neurons model_template='nest:iaf_psc_alpha', # tells the simulator to use NEST iaf_psc_alpha models dynamics_params='472363762_point.json' # File containing iaf_psc_alpha mdoel parameters ) net.add_nodes(N=20, pop_name='PV', location='VisL4', ei='i', positions=positions_columinar(N=20, center=[0, 50.0, 0], max_radius=30.0, height=100.0), model_type='point_process', model_template='nest:iaf_psc_alpha', dynamics_params='472912177_point.json') net.add_nodes(N=200, pop_name='LIF_exc', location='L4', ei='e', positions=positions_columinar(N=200, center=[0, 50.0, 0], min_radius=30.0, max_radius=60.0, height=100.0), model_type='point_process', model_template='nest:iaf_psc_alpha', dynamics_params='IntFire1_exc_point.json') net.add_nodes(N=100, pop_name='LIF_inh', location='L4', ei='i', positions=positions_columinar(N=100, center=[0, 50.0, 0], min_radius=30.0, max_radius=60.0, height=100.0), model_type='point_process',
# generate the polar coordinates for GC phi_GC = np.linspace(2 * np.pi / N_GC_all, 2 * np.pi, N_GC_all) phi_GC = np.random.permutation( phi_GC) # permute the numbers to assign cells randomly rho_GC = np.ones(len(phi_GC)) * 800 # generate the polar coordinates for BC phi_BC = np.linspace(2 * np.pi / N_BC_all, 2 * np.pi, N_BC_all) phi_BC = np.random.permutation( phi_BC) # permute the numbers to assign cells randomly rho_BC = np.ones(len(phi_BC)) * 750 # set up the index for phi phi_index = 0 net = NetworkBuilder("DG") net.add_nodes( N=N_GC_1, # specifiy the number of cells belong to said group. pop_name='GC', location='Granule_cell_layer', ei= 'e', # pop_name, location, and ei are optional parameters that help's identifies properties of the cells. The modeler can choose whatever key-value pairs as they deem appropiate. positions=generate_arc_positions_3D( phi_GC[phi_index:N_GC_1], rho_GC[phi_index:N_GC_1] ), # The following properties we are passing in lists # of size N. Doing so will uniquely assign different rotation_angle_xaxis=generate_rotation_angle_1D(rho_GC[phi_index:N_GC_1], 3.130742385893708), rotation_angle_yaxis=generate_rotation_angle_1D(rho_GC[phi_index:N_GC_1], 0), rotation_angle_zaxis=generate_rotation_angle_1D(rho_GC[phi_index:N_GC_1], -0.524013338073954),
def build_tw(): if not os.path.exists('output/network/TW'): os.makedirs('output/network/TW') TW = NetworkBuilder("TW") TW.add_nodes(N=3000, node_type_id='TW_001', pop_name='TW', ei='e', location='TW', level_of_detail='filter') # Save cells.csv and cell_types.csv TW.save_cells( filename='output/network/TW/tw_nodes.csv', columns=['node_id', 'node_type_id', 'pop_name', 'ei', 'location']) TW.save_types(filename='output/network/TW/tw_node_types.csv', columns=['node_type_id', 'level_of_detail']) VL4 = NetworkBuilder.load("V1/L4", nodes='output/network/VisL4/nodes.csv', node_types='output/network/VisL4/node_types.csv') VL4.connect(source=TW.nodes(), target={'pop_name': 'Rorb'}, connector=lambda trg, src: 5, edge_params={ 'weight_max': 12.75, 'weight_function': 'wmax', 'delay': 2.0, 'params_file': 'ExcToExc.json', 'synapse_model': 'static_synapse' }) VL4.connect(source=TW.nodes(), target={'pop_name': 'Scnn1a'}, connector=lambda trg, src: 5, edge_params={ 'weight_max': 33.25, 'weight_function': 'wmax', 'delay': 2.0, 'params_file': 'ExcToExc.json', 'synapse_model': 'static_synapse' }) VL4.connect(source=TW.nodes(), target={'pop_name': 'Nr5a1'}, connector=lambda trg, src: 5, edge_params={ 'weight_max': 19.0, 'weight_function': 'wmax', 'delay': 2.0, 'params_file': 'ExcToExc.json', 'synapse_model': 'static_synapse' }) VL4.connect(source=TW.nodes(), target={'pop_name': 'PV1'}, connector=lambda trg, src: 5, edge_params={ 'weight_max': 83.6, 'weight_function': 'wmax', 'delay': 2.0, 'params_file': 'ExcToInh.json', 'synapse_model': 'static_synapse' }) VL4.connect(source=TW.nodes(), target={'pop_name': 'PV2'}, connector=lambda trg, src: 5, edge_params={ 'weight_max': 32.5, 'weight_function': 'wmax', 'delay': 2.0, 'params_file': 'ExcToInh.json', 'synapse_model': 'static_synapse' }) VL4.connect(source=TW.nodes(), target={'pop_name': 'LIF_exc'}, connector=lambda trg, src: 5, edge_params={ 'weight_max': 22.5, 'weight_function': 'wmax', 'delay': 2.0, 'params_file': 'ExcToInh.json', 'synapse_model': 'static_synapse' }) VL4.connect(source=TW.nodes(), target={'pop_name': 'LIF_inh'}, connector=lambda trg, src: 5, edge_params={ 'weight_max': 55.0, 'weight_function': 'wmax', 'delay': 2.0, 'params_file': 'ExcToInh.json', 'synapse_model': 'static_synapse' }) VL4.build() VL4.save_edge_types('output/network/TW/tw_edge_types.csv', opt_columns=[ 'weight_max', 'weight_function', 'delay', 'params_file', 'synapse_model' ]) VL4.save_edges(filename='output/network/TW/tw_edges.h5')
import os import numpy as np from bmtk.builder.networks import NetworkBuilder # Step 1: Create a v1 mock network of 14 cells (nodes) with across 7 different cell "types" net = NetworkBuilder("v1") net.add_nodes(N=1, # specifiy the number of cells belong to said group. pop_name='', location='L2', ei='e', # pop_name, location, and ei are optional parameters that help's identifies properties of the cells. The modeler can choose whatever key-value pairs as they deem appropiate. positions=[(2.753, -464.868, -161.705)], # The following properties we are passing in lists tuning_angle=[0.0], # values to each individual cell rotation_angle_xaxis=-0.010516, rotation_angle_yaxis=0, rotation_angle_zaxis=-3.011895, # Note that the y-axis rotation is differnt for each cell (ie. given a list of size N), but with z-axis rotation all cells have the same value model_type='biophysical', # The type of cell we are using model_template='ctdb:Biophys1.hoc', # Tells the simulator that when building cells models use a hoc_template specially created for parsing Allen Cell-types file models. Value would be different if we were using NeuronML or different model files model_processing='aibs_allactive_ani_directed', # further instructions for how to processes a cell model. In this case aibs_perisomatic is a built-in directive to cut the axon in a specific way dynamics_params='optim_param_571654895.json', # Name of file (downloaded from Allen Cell-Types) used to set model parameters and channels morphology='571654895.swc'), # Name of morphology file downloaded # Step 2: We want to connect our network. Just like how we have node-types concept we group our connections into # "edge-types" that share rules and properties net.add_edges(source={'ei': 'e'}, target={'pop_name': ''}, connection_rule=5, syn_weight=4e-05, weight_function='gaussianLL', weight_sigma=50.0, distance_range=[30.0, 150.0], target_sections=['basal', 'apical'],
import numpy as np from bmtk.builder.networks import NetworkBuilder from bmtk.builder.auxi.edge_connectors import connect_random #print np.random.geometric(p=0.5) #print np.sqrt(1-0.005)/0.005 """ def connect_random(source, target, nsyn_min=0, nsyn_max=10, distribution=None): return np.random.randint(nsyn_min, nsyn_max) """ thalamus = NetworkBuilder('mthalamus') thalamus.add_nodes(N=100, pop_name='tON', potential='exc', level_of_detail='filter') cortex = NetworkBuilder('mcortex') cortex.import_nodes(nodes_file_name='network/mcortex_nodes.h5', node_types_file_name='network/mcortex_node_types.csv') thalamus.add_edges(source=thalamus.nodes(), target=cortex.nodes(), connection_rule=connect_random, connection_params={ 'nsyn_min': 0, 'nsyn_max': 12 }, syn_weight=1.0e-04, distance_range=[0.0, 150.0], target_sections=['basal', 'apical'],
def build_l4(): if not os.path.exists('output/network/VisL4'): os.makedirs('output/network/VisL4') net = NetworkBuilder("V1/L4") net.add_nodes(node_type_id=0, pop_name='excitatory', params_file='excitatory_pop.json') net.add_nodes(node_type_id=1, pop_name='inhibitory', params_file='inhibitory_pop.json') net.connect(target={'pop_name': 'excitatory'}, source={'pop_name': 'inhibitory'}, edge_params={'weight': -0.001, 'delay': 0.002, 'nsyns': 2, 'params_file': 'ExcToInh.json'}) net.connect(target={'pop_name': 'inhibitory'}, source={'pop_name': 'excitatory'}, edge_params={'weight': 0.001, 'delay': 0.002, 'nsyns': 5, 'params_file': 'ExcToInh.json'}) net.save_types(filename='output/network/VisL4/node_types.csv', columns=['node_type_id', 'pop_name', 'params_file']) net.save_edge_types('output/network/VisL4/edge_types.csv', opt_columns=['weight', 'delay', 'nsyns', 'params_file'])
def build_lgn(): if not os.path.exists('output/network/LGN'): os.makedirs('output/network/LGN') net = NetworkBuilder("LGN") net.add_nodes(N=3000, node_type_id='tON_001', ei='e', location='LGN', pop_name='tON_001', params_file='filter_pop.json') net.add_nodes(N=3000, node_type_id='tOFF_001', ei='e', location='LGN', pop_name='tOFF_001', params_file='filter_pop.json') net.add_nodes(N=3000, node_type_id='tONOFF_001', ei='e', location='LGN', pop_name='tONOFF_001', params_file='filter_pop.json') net.save_cells(filename='output/network/LGN/nodes.csv', columns=['node_id', 'node_type_id']) net.save_types(filename='output/network/LGN/node_types.csv', columns=['node_type_id', 'ei', 'location', 'pop_name', 'params_file']) net.connect(target={'pop_name': 'excitatory'}, edge_params={'weight': 0.0015, 'delay': 0.002, 'params_file': 'ExcToExc.json', 'nsyns': 10}) net.connect(target={'pop_name': 'inhibitory'}, edge_params={'weight': 0.0019, 'delay': 0.002, 'params_file': 'ExcToInh.json', 'nsyns': 12}) net.save_edge_types('output/network/LGN/edge_types.csv', opt_columns=['weight', 'delay', 'nsyns', 'params_file'])
from bmtk.builder.networks import NetworkBuilder net = NetworkBuilder('hco_net') net.add_nodes(cell_name='HCOCell', model_type='biophysical', model_template='hoc:HCOcell', morphology='blank.swc', HCOCell='HCOCell') net.build() net.save_nodes(output_dir='network')
from bmtk.builder.networks import NetworkBuilder net = NetworkBuilder('mcortex') net.add_nodes(cell_name='Cell_PN', potental='exc', model_type='biophysical', model_template='hoc:Cell_PN', morphology=None ) net.build() net.save_nodes(output_dir='network') for node in net.nodes(): print(node) from bmtk.utils.sim_setup import build_env_bionet build_env_bionet(base_dir='PN_IClamp', # Where to save the scripts and config files components_dir='components', network_dir='network', # Location of directory containing network files tstop=2000.0, dt=0.1, # Run a simulation for 2000 ms at 0.1 ms intervals report_vars=['v'], # Tells simulator we want to record membrane potential and calcium traces current_clamp={ # Creates a step current from 500.ms to 1500.0 ms 'amp': 0.3, 'delay': 500.0, 'duration': 1000.0 }, compile_mechanisms=True # Will try to compile NEURON mechanisms )
from bmtk.builder.networks import NetworkBuilder net = NetworkBuilder("biophysical") #L5 Cell # net.add_nodes(N=1, pop_name='Pyrc', # potental='exc', # model_type='biophysical', # model_template='hoc:L5PCtemplate', # morphology = None) #L2/3 Cell net.add_nodes(N=1, pop_name='Pyrc', potental='exc', model_type='biophysical', dynamics_params="L2-3_fit.json", model_template="ctdb:Biophys1.hoc", model_processing="aibs_allactive", morphology="L2-3.swc") net.build() net.save_nodes(output_dir='network') from bmtk.utils.sim_setup import build_env_bionet build_env_bionet( base_dir='./', # Where to save the scripts and config files components_dir='../biophys_components', network_dir='./network', # Location of directory containing network files tstop=3000.0,
def build_input_network(net, output_dir='network/source_input'): def select_source_cells(sources, target, N_syn=10): """ Note here that "sources" are given (not "source"). So the iterations occur through every target with all sources as potential inputs. Faster than before and better if will have common rules. """ target_id = target.node_id source_ids = [s.node_id for s in sources] nsyns_ret = [N_syn] * len(source_ids) return nsyns_ret filter_models = { 'inputFilter': { 'N': 25, 'ei': 'e', 'pop_name': 'input_filter', 'model_type': 'virtual' } } inputNetwork = NetworkBuilder("inputNetwork") inputNetwork.add_nodes(**filter_models['inputFilter']) inputNetwork.add_edges(target=net.nodes(pop_name='Scnn1a'), iterator='all_to_one', connection_rule=select_source_cells, syn_weight=0.0007, distance_range=[0.0, 150.0], target_sections=['basal', 'apical'], delay=2.0, dynamics_params='AMPA_ExcToExc.json', model_template='exp2syn') inputNetwork.add_edges(target=net.nodes(pop_name='LIF_exc'), iterator='all_to_one', connection_rule=select_source_cells, syn_weight=0.07, delay=2.0, dynamics_params='instanteneousExc.json') inputNetwork.add_edges(target=net.nodes(pop_name='PV1'), iterator='all_to_one', connection_rule=select_source_cells, syn_weight=0.002, distance_range=[0.0, 1.0e+20], target_sections=['basal', 'somatic'], delay=2.0, dynamics_params='AMPA_ExcToInh.json', model_template='exp2syn') inputNetwork.add_edges(target=net.nodes(pop_name='LIF_inh'), iterator='all_to_one', connection_rule=select_source_cells, syn_weight=0.01, delay=2.0, dynamics_params='instanteneousExc.json') inputNetwork.build() inputNetwork.save(output_dir=output_dir)
def build_cortical_network(output_dir='network/recurrent_network'): def distance_connection_handler(source, target, d_max, nsyn_min, nsyn_max): """ Connect cells that are less than d_max apart with a random number of synapses in the interval [nsyn_min, nsyn_max) """ sid = source['node_id'] # Get source id tid = target['node_id'] # Get target id # Avoid self-connections. if (sid == tid): return None # first calculate euclidean distance between cells src_positions = np.array([source['x'], source['y'], source['z']]) trg_positions = np.array([target['x'], target['y'], target['z']]) separation = np.sqrt(np.sum(src_positions - trg_positions)**2) # drop the connection if nodes too far apart if separation >= d_max: return None # Add the number of synapses for every connection. tmp_nsyn = random.randint(nsyn_min, nsyn_max) return tmp_nsyn #### Step 1: Figure out what types, and number of, different cells to use in our network #### # Number of cell models desired N_Scnn1a = 2 N_PV1 = 2 N_LIF_exc = 2 N_LIF_inh = 2 # Define all the cell models in a dictionary (note dictionaries within a dictionary) biophysical_models = { 'Scnn1a': { 'N': N_Scnn1a, 'ei': 'e', 'pop_name': 'Scnn1a', 'model_type': 'biophysical', 'model_template': 'ctdb:Biophys1.hoc', 'model_processing': 'aibs_perisomatic', 'morphology_file': 'Scnn1a-Tg3-Cre_Ai14_IVSCC_-177300.01.02.01_473845048_m.swc', 'dynamics_params': '472363762_fit.json', 'rotation_angle_zaxis': -3.646878266 }, 'PV1': { 'N': N_PV1, 'ei': 'i', 'pop_name': 'PV1', 'model_type': 'biophysical', 'model_template': 'ctdb:Biophys1.hoc', 'model_processing': 'aibs_perisomatic', 'dynamics_params': '472912177_fit.json', 'morphology_file': 'Pvalb-IRES-Cre_Ai14_IVSCC_-176847.04.02.01_470522102_m.swc', 'rotation_angle_zaxis': -2.539551891 } } # Define all the cell models in a dictionary. LIF_models = { 'LIF_exc': { 'N': N_LIF_exc, 'ei': 'e', 'pop_name': 'LIF_exc', 'model_type': 'point_process', 'model_template': 'nrn:IntFire1', 'dynamics_params': 'IntFire1_exc_1.json' }, 'LIF_inh': { 'N': N_LIF_inh, 'ei': 'i', 'pop_name': 'LIF_inh', 'model_type': 'point_process', 'model_template': 'nrn:IntFire1', 'dynamics_params': 'IntFire1_inh_1.json' } } #### Step 2: Create NetworkBuidler object to build nodes and edges #### net = NetworkBuilder('Cortical') #### Step 3: Used add_nodes() method to add all our cells/cell-types for model in biophysical_models: # Build our biophysical cells params = biophysical_models[model] n_cells = params.pop('N') # We'll randomly assign positions positions = generate_random_positions(n_cells) # Use add_nodes to create a set of N cells for each cell-type net.add_nodes( N=n_cells, # Specify the numer of cells belonging to this set of nodes x=positions[:, 0], y=positions[:, 1], z=positions[:, 2], rotation_angle_yaxis=np.random.uniform(0.0, 2 * np.pi, n_cells), # The other parameters are shared by all cells of this set in the dictionary **params) # python shortcut for unrolling a dictionary for model in LIF_models: # Same thing as above but for our LIF type cells params = LIF_models[model].copy() # Number of cells for this model type n_cells = params.pop('N') # Precacluate positions, rotation angles for each N neurons in the population positions = generate_random_positions(n_cells) # Adds node populations net.add_nodes(N=n_cells, x=positions[:, 0], y=positions[:, 1], z=positions[:, 2], rotation_angle_yaxis=np.random.uniform( 0.0, 2 * np.pi, n_cells), **params) #### Step 4: Used add_edges() to set our connections between cells #### cparameters = { 'd_max': 160.0, # Maximum separation between nodes where connection allowed 'nsyn_min': 3, # If connection exist, minimum number of synapses 'nsyn_max': 7 } # If connection exist, maximum number of synapses net.add_edges( source={ 'ei': 'i' }, # Select all inhibitory cells to apply this connection rule too target={ 'ei': 'i', 'model_type': 'biophysical' }, # for the target cells we will use inhibitory biophysical cells connection_rule=distance_connection_handler, connection_params={ 'd_max': 160.0, 'nsyn_min': 3, 'nsyn_max': 7 }, syn_weight=0.03, distance_range=[0.0, 1e+20], target_sections=['somatic', 'basal'], delay=2.0, dynamics_params='GABA_InhToInh.json', model_template='exp2syn') # inhibitory --> point-inhibitory net.add_edges(source={'ei': 'i'}, target={ 'ei': 'i', 'model_type': 'point_process' }, connection_rule=distance_connection_handler, connection_params={ 'd_max': 160.0, 'nsyn_min': 3, 'nsyn_max': 7 }, syn_weight=0.3, delay=2.0, dynamics_params='instanteneousInh.json') # inhibiotry --> biophysical-excitatory net.add_edges(source={'ei': 'i'}, target={ 'ei': 'e', 'model_type': 'biophysical' }, connection_rule=distance_connection_handler, connection_params={ 'd_max': 160.0, 'nsyn_min': 3, 'nsyn_max': 7 }, syn_weight=0.3, distance_range=[0.0, 50.0], target_sections=['somatic', 'basal', 'apical'], delay=2.0, dynamics_params='GABA_InhToExc.json', model_template='exp2syn') # inhibitory --> point-excitatory net.add_edges(source={'ei': 'i'}, target={ 'ei': 'e', 'model_type': 'point_process' }, connection_rule=distance_connection_handler, connection_params={ 'd_max': 160.0, 'nsyn_min': 3, 'nsyn_max': 7 }, syn_weight=0.4, delay=2.0, dynamics_params='instanteneousInh.json') # excitatory --> PV1 cells net.add_edges(source={'ei': 'e'}, target={'pop_name': 'PV1'}, connection_rule=distance_connection_handler, connection_params={ 'd_max': 160.0, 'nsyn_min': 3, 'nsyn_max': 7 }, syn_weight=0.05, distance_range=[0.0, 1e+20], target_sections=['somatic', 'basal'], delay=2.0, dynamics_params='AMPA_ExcToInh.json', model_template='exp2syn') # excitatory --> LIF_inh net.add_edges(source={'ei': 'e'}, target={'pop_name': 'LIF_inh'}, connection_rule=distance_connection_handler, connection_params=cparameters, syn_weight=0.2, delay=2.0, dynamics_params='instanteneousExc.json') # excitatory --> Scnn1a net.add_edges(source={'ei': 'e'}, target={'pop_name': 'Scnn1a'}, connection_rule=distance_connection_handler, connection_params={ 'd_max': 160.0, 'nsyn_min': 3, 'nsyn_max': 7 }, syn_weight=0.05, distance_range=[30.0, 150.0], target_sections=['basal', 'apical'], delay=2.0, dynamics_params='AMPA_ExcToExc.json', model_template='exp2syn') # excitatory --> LIF_exc net.add_edges(source={'ei': 'e'}, target={'pop_name': 'LIF_exc'}, connection_rule=distance_connection_handler, connection_params={ 'd_max': 160.0, 'nsyn_min': 3, 'nsyn_max': 7 }, syn_weight=0.05, delay=2.0, dynamics_params='instanteneousExc.json') #### Step 5: Build and save the network #### net.build() net.save(output_dir=output_dir) return net
def build_ext5_nodes(): if not os.path.exists('network'): os.makedirs('network') EXT = NetworkBuilder("EXT") # need 5 cells to stimulate at 5 different frequencies EXT.add_nodes(N=5, pop_name='EXT', model_type='virtual', firing_rate=firing_rate) # Save cells.csv and cell_types.csv EXT.save_nodes(nodes_file_name='network/ext_nodes.h5', node_types_file_name='network/ext_node_types.csv') net = NetworkBuilder('slice') net.import_nodes(nodes_file_name='network/slice_nodes.h5', node_types_file_name='network/slice_node_types.csv') net.add_edges(source=EXT.nodes(firing_rate=10), target=net.nodes(firing_rate=10, synapse_model='a'), connection_rule=5, **({ 'syn_weight': 0.002, 'weight_function': 'wmax', 'distance_range': [0.0, 50.0], 'target_sections': ['somatic', 'basal', 'apical'], 'delay': 2.0, 'dynamics_params': 'AMPA_ExcToExc.json', 'model_template': 'expsyn' })) net.add_edges(source=EXT.nodes(firing_rate=20), target=net.nodes(firing_rate=20, synapse_model='a'), connection_rule=5, **({ 'syn_weight': 0.002, 'weight_function': 'wmax', 'distance_range': [0.0, 50.0], 'target_sections': ['somatic', 'basal', 'apical'], 'delay': 2.0, 'dynamics_params': 'AMPA_ExcToExc.json', 'model_template': 'expsyn' })) net.add_edges(source=EXT.nodes(firing_rate=50), target=net.nodes(firing_rate=50, synapse_model='a'), connection_rule=5, **({ 'syn_weight': 0.002, 'weight_function': 'wmax', 'distance_range': [0.0, 50.0], 'target_sections': ['somatic', 'basal', 'apical'], 'delay': 2.0, 'dynamics_params': 'AMPA_ExcToExc.json', 'model_template': 'expsyn' })) net.add_edges(source=EXT.nodes(firing_rate=100), target=net.nodes(firing_rate=100, synapse_model='a'), connection_rule=5, **({ 'syn_weight': 0.002, 'weight_function': 'wmax', 'distance_range': [0.0, 50.0], 'target_sections': ['somatic', 'basal', 'apical'], 'delay': 2.0, 'dynamics_params': 'AMPA_ExcToExc.json', 'model_template': 'expsyn' })) net.add_edges(source=EXT.nodes(firing_rate=200), target=net.nodes(firing_rate=200, synapse_model='a'), connection_rule=5, **({ 'syn_weight': 0.002, 'weight_function': 'wmax', 'distance_range': [0.0, 50.0], 'target_sections': ['somatic', 'basal', 'apical'], 'delay': 2.0, 'dynamics_params': 'AMPA_ExcToExc.json', 'model_template': 'expsyn' })) net.add_edges(source=EXT.nodes(firing_rate=10), target=net.nodes(firing_rate=10, synapse_model='b'), connection_rule=5, **({ 'syn_weight': 0.002, 'weight_function': 'wmax', 'distance_range': [0.0, 50.0], 'target_sections': ['somatic', 'basal', 'apical'], 'delay': 2.0, 'dynamics_params': 'pvalb_pvalb.json', 'model_template': 'stp2syn' })) net.add_edges(source=EXT.nodes(firing_rate=20), target=net.nodes(firing_rate=20, synapse_model='b'), connection_rule=5, **({ 'syn_weight': 0.002, 'weight_function': 'wmax', 'distance_range': [0.0, 50.0], 'target_sections': ['somatic', 'basal', 'apical'], 'delay': 2.0, 'dynamics_params': 'pvalb_pvalb.json', 'model_template': 'stp2syn' })) net.add_edges(source=EXT.nodes(firing_rate=50), target=net.nodes(firing_rate=50, synapse_model='b'), connection_rule=5, **({ 'syn_weight': 0.002, 'weight_function': 'wmax', 'distance_range': [0.0, 50.0], 'target_sections': ['somatic', 'basal', 'apical'], 'delay': 2.0, 'dynamics_params': 'pvalb_pvalb.json', 'model_template': 'stp2syn' })) net.add_edges(source=EXT.nodes(firing_rate=100), target=net.nodes(firing_rate=100, synapse_model='b'), connection_rule=5, **({ 'syn_weight': 0.002, 'weight_function': 'wmax', 'distance_range': [0.0, 50.0], 'target_sections': ['somatic', 'basal', 'apical'], 'delay': 2.0, 'dynamics_params': 'pvalb_pvalb.json', 'model_template': 'stp2syn' })) net.add_edges(source=EXT.nodes(firing_rate=200), target=net.nodes(firing_rate=200, synapse_model='b'), connection_rule=5, **({ 'syn_weight': 0.002, 'weight_function': 'wmax', 'distance_range': [0.0, 50.0], 'target_sections': ['somatic', 'basal', 'apical'], 'delay': 2.0, 'dynamics_params': 'pvalb_pvalb.json', 'model_template': 'stp2syn' })) net.build() net.save_edges(edges_file_name='network/ext_to_slice_edges.h5', edge_types_file_name='network/ext_to_slice_edge_types.csv')
def build_lgn(): def generate_positions(N, x0=0.0, x1=300.0, y0=0.0, y1=100.0): X = np.random.uniform(x0, x1, N) Y = np.random.uniform(y0, y1, N) return np.column_stack((X, Y)) def select_source_cells(src_cells, trg_cell, n_syns): if trg_cell['tuning_angle'] is not None: synapses = [ n_syns if src['pop_name'] == 'tON' or src['pop_name'] == 'tOFF' else 0 for src in src_cells ] else: synapses = [ n_syns if src['pop_name'] == 'tONOFF' else 0 for src in src_cells ] return synapses if not os.path.exists('output/network/LGN'): os.makedirs('output/network/LGN') LGN = NetworkBuilder("LGN") LGN.add_nodes(N=3000, position='points', position_params={'location': generate_positions(3000)}, node_type_id='tON_001', location='LGN', model_type='spike_generator', pop_name='tON', ei='e', params_file='filter_point.json') LGN.add_nodes(N=3000, position='points', position_params={'location': generate_positions(3000)}, node_type_id='tOFF_001', location='LGN', model_type='spike_generator', pop_name='tOFF', ei='e', params_file='filter_point.json') LGN.add_nodes(N=3000, position='points', position_params={'location': generate_positions(3000)}, node_type_id='tONOFF_001', location='LGN', model_type='spike_generator', pop_name='tONOFF', ei='e', params_file='filter_point.json') LGN.save_cells(filename='output/network/LGN/lgn_nodes.csv', columns=['node_id', 'node_type_id', 'position'], position_labels=['x', 'y']) LGN.save_types(filename='output/network/LGN/lgn_node_types.csv', columns=[ 'node_type_id', 'ei', 'location', 'model_type', 'params_file' ]) VL4 = NetworkBuilder.load("V1/L4", nodes='output/network/VisL4/nodes.csv', node_types='output/network/VisL4/node_types.csv') VL4.connect(source=LGN.nodes(), target={'pop_name': 'Rorb'}, iterator='all_to_one', connector=select_source_cells, connector_params={'n_syns': 10}, edge_params={ 'weight_max': 4.125, 'weight_function': 'wmax', 'delay': 2.0, 'params_file': 'ExcToExc.json', 'synapse_model': 'static_synapse' }) VL4.connect(source=LGN.nodes(), target={'pop_name': 'Nr5a1'}, iterator='all_to_one', connector=select_source_cells, connector_params={'n_syns': 10}, edge_params={ 'weight_max': 4.5, 'weight_function': 'wmax', 'delay': 2.0, 'params_file': 'ExcToExc.json', 'synapse_model': 'static_synapse' }) VL4.connect(source=LGN.nodes(), target={'pop_name': 'Scnn1a'}, iterator='all_to_one', connector=select_source_cells, connector_params={'n_syns': 10}, edge_params={ 'weight_max': 5.6, 'weight_function': 'wmax', 'distance_range': [0.0, 150.0], 'delay': 2.0, 'params_file': 'ExcToExc.json', 'synapse_model': 'static_synapse' }) VL4.connect(source=LGN.nodes(), target={'pop_name': 'PV1'}, iterator='all_to_one', connector=select_source_cells, connector_params={'n_syns': 10}, edge_params={ 'weight_max': 1.54, 'weight_function': 'wmax', 'delay': 2.0, 'params_file': 'ExcToInh.json', 'synapse_model': 'static_synapse' }) VL4.connect(source=LGN.nodes(), target={'pop_name': 'PV2'}, iterator='all_to_one', connector=select_source_cells, connector_params={'n_syns': 10}, edge_params={ 'weight_max': 1.26, 'weight_function': 'wmax', 'delay': 2.0, 'params_file': 'ExcToInh.json', 'synapse_model': 'static_synapse' }) VL4.connect(source=LGN.nodes(), target={'pop_name': 'LIF_exc'}, iterator='all_to_one', connector=select_source_cells, connector_params={'n_syns': 10}, edge_params={ 'weight_max': 4.41, 'weight_function': 'wmax', 'delay': 2.0, 'params_file': 'ExcToInh.json', 'synapse_model': 'static_synapse' }) VL4.connect(source=LGN.nodes(), target={'pop_name': 'LIF_inh'}, iterator='all_to_one', connector=select_source_cells, connector_params={'n_syns': 10}, edge_params={ 'weight_max': 2.52, 'weight_function': 'wmax', 'delay': 2.0, 'params_file': 'ExcToInh.json', 'synapse_model': 'static_synapse' }) VL4.build() VL4.save_edge_types('output/network/LGN/lgn_edge_types.csv', opt_columns=[ 'weight_max', 'weight_function', 'delay', 'params_file', 'synapse_model' ]) VL4.save_edges(filename='output/network/LGN/lgn_edges.h5')
from bmtk.builder.networks import NetworkBuilder def crule(src, trg): # print src.node_id, trg.node_id return 2 net1 = NetworkBuilder('NET1') net1.add_nodes(N=100, position=[(0.0, 1.0, -1.0)] * 100, cell_type='Scnna1', ei='e') net1.add_edges(source={'ei': 'e'}, target={'ei': 'e'}, connection_rule=5) net1.build() net2 = NetworkBuilder('NET2') net2.add_nodes(N=10, position=[(0.0, 1.0, -1.0)] * 10, cell_type='PV1', ei='i') net2.add_edges(connection_rule=10) net2.add_edges(source=net1.nodes(), connection_rule=1) net2.add_edges(target=net1.nodes(), connection_rule=crule) net2.build() #net1.save_edges(output_dir='tmp_output') net2.save_edges(output_dir='tmp_output')
def build_l4(): if not os.path.exists('output/network/VisL4'): os.makedirs('output/network/VisL4') net = NetworkBuilder("V1/L4") net.add_nodes(N=2, pop_name='Scnn1a', node_type_id='395830185', position='points', position_params={ 'location': [(28.753, -364.868, -161.705), (48.753, -344.868, -141.705)] }, array_params={"tuning_angle": [0.0, 25.0]}, location='VisL4', ei='e', gaba_synapse='y', params_file='472363762_point.json', model_type='iaf_psc_alpha') net.add_nodes(N=2, pop_name='Rorb', node_type_id='314804042', position='points', position_params={ 'location': [(241.092, -349.263, 146.916), (201.092, -399.263, 126.916)] }, array_params={"tuning_angle": [50.0, 75.0]}, location='VisL4', ei='e', gaba_synapse='y', params_file='473863510_point.json', model_type='iaf_psc_alpha') net.add_nodes(N=2, pop_name='Nr5a1', node_type_id='318808427', position='points', position_params={ 'location': [(320.498, -351.259, 20.273), (310.498, -371.259, 10.273)] }, array_params={"tuning_angle": [100.0, 125.0]}, location='VisL4', ei='e', gaba_synapse='y', params_file='473863035_point.json', model_type='iaf_psc_alpha') net.add_nodes(N=2, pop_name='PV1', node_type_id='330080937', position='points', position_params={ 'location': [(122.373, -352.417, -216.748), (102.373, -342.417, -206.748)] }, array_params={'tuning_angle': ['NA', 'NA']}, location='VisL4', ei='i', gaba_synapse='y', params_file='472912177_fit.json', model_type='iaf_psc_alpha') net.add_nodes(N=2, pop_name='PV2', node_type_id='318331342', position='points', position_params={ 'location': [(350.321, -372.535, -18.282), (360.321, -371.535, -12.282)] }, array_params={'tuning_angle': ['NA', 'NA']}, location='VisL4', ei='i', gaba_synapse='y', params_file='473862421_point.json', model_type='iaf_psc_alpha') net.add_nodes(N=2, pop_name='LIF_exc', node_type_id='100000101', position='points', position_params={ 'location': [(-243.04, -342.352, -665.666), (-233.04, -332.352, -675.666)] }, array_params={'tuning_angle': ['NA', 'NA']}, location='VisL4', ei='e', gaba_synapse='n', params_file='IntFire1_exc_1.json', model_type='iaf_psc_alpha') net.add_nodes(N=2, pop_name='LIF_inh', node_type_id='100000102', position='points', position_params={ 'location': [(211.04, -321.333, -631.593), (218.04, -327.333, -635.593)] }, array_params={'tuning_angle': [150.0, 175.0]}, location='VisL4', ei='i', gaba_synapse='n', params_file='IntFire1_inh_1.json', model_type='iaf_psc_alpha') print("Setting connections...") net.connect(source={'ei': 'i'}, target={ 'ei': 'i', 'gaba_synapse': 'y' }, connector=lambda trg, src: 5, edge_params={ 'weight_max': -1.8, 'weight_function': 'wmax', 'delay': 2.0, 'params_file': 'InhToInh.json', 'synapse_model': 'static_synapse' }) net.connect(source={'ei': 'i'}, target={ 'ei': 'e', 'gaba_synapse': 'y' }, connector=lambda trg, src: 5, edge_params={ 'weight_max': -12.6, 'weight_function': 'wmax', 'delay': 2.0, 'params_file': 'InhToExc.json', 'synapse_model': 'static_synapse' }) net.connect(source={'ei': 'i'}, target={'pop_name': 'LIF_inh'}, connector=lambda trg, src: 5, edge_params={ 'weight_max': -1.125, 'weight_function': 'wmax', 'delay': 2.0, 'params_file': 'InhToInh.json', 'synapse_model': 'static_synapse' }) net.connect(source={'ei': 'i'}, target={'pop_name': 'LIF_exc'}, connector=lambda trg, src: 5, edge_params={ 'weight_max': -6.3, 'weight_function': 'wmax', 'delay': 2.0, 'params_file': 'ExcToInh.json', 'synapse_model': 'static_synapse' }) net.connect(source={'ei': 'e'}, target={'pop_name': 'PV1'}, connector=lambda trg, src: 5, edge_params={ 'weight_max': 7.7, 'weight_function': 'wmax', 'delay': 2.0, 'params_file': 'ExcToInh.json', 'synapse_model': 'static_synapse' }) net.connect(source={'ei': 'e'}, target={'pop_name': 'PV2'}, connector=lambda trg, src: 5, edge_params={ 'weight_max': 5.4, 'weight_function': 'wmax', 'delay': 2.0, 'params_file': 'ExcToInh.json', 'synapse_model': 'static_synapse' }) net.connect(source={'ei': 'e'}, target={'pop_name': 'LIF_inh'}, connector=lambda trg, src: 5, edge_params={ 'weight_max': 3.44, 'weight_function': 'wmax', 'delay': 2.0, 'params_file': 'ExcToInh.json', 'synapse_model': 'static_synapse' }) print("Generating E-to-E connections.") net.connect(source={'ei': 'e'}, target={'pop_name': 'Scnn1a'}, connector=lambda trg, src: 5, edge_params={ 'weight_max': 8.448, 'weight_function': 'gaussianLL', 'weight_sigma': 50.0, 'delay': 2.0, 'params_file': 'ExcToExc.json', 'synapse_model': 'static_synapse' }) net.connect(source={'ei': 'e'}, target={'pop_name': 'Rorb'}, connector=lambda trg, src: 5, edge_params={ 'weight_max': 4.292, 'weight_function': 'gaussianLL', 'weight_sigma': 50.0, 'delay': 2.0, 'params_file': 'ExcToExc.json', 'synapse_model': 'static_synapse' }) net.connect(source={'ei': 'e'}, target={'pop_name': 'Nr5a1'}, connector=lambda trg, src: 5, edge_params={ 'weight_max': 5.184, 'weight_function': 'gaussianLL', 'weight_sigma': 50.0, 'delay': 2.0, 'params_file': 'ExcToExc.json', 'synapse_model': 'static_synapse' }) net.connect(source={'ei': 'e'}, target={'pop_name': 'LIF_exc'}, connector=lambda trg, src: 5, edge_params={ 'weight_max': 1.995, 'weight_function': 'gaussianLL', 'weight_sigma': 50.0, 'delay': 2.0, 'params_file': 'ExcToExc.json', 'synapse_model': 'static_synapse' }) net.build() net.save_cells( filename='output/network/VisL4/nodes.csv', columns=['node_id', 'node_type_id', 'position', 'tuning_angle'], position_labels=['x', 'y', 'z']) net.save_types(filename='output/network/VisL4/node_types.csv', columns=[ 'node_type_id', 'pop_name', 'ei', 'gaba_synapse', 'location', 'model_type', 'params_file' ]) net.save_edge_types('output/network/VisL4/edge_types.csv', opt_columns=[ 'weight_max', 'weight_function', 'weight_sigma', 'delay', 'params_file', 'synapse_model' ]) net.save_edges(filename='output/network/VisL4/edges.h5') return net
'hoc_template': 'IntFire1' } }, 'LIF_inh': { 'N': 5250, 'props': { 'ei': 'i', 'level_of_detail': 'intfire', 'electrophysiology': 'IntFire1_inh_1.json', 'hoc_template': 'IntFire1' } } } net = NetworkBuilder('V1/L4') for name, model_params in cell_models.items(): N = model_params['N'] cell_props = {'position': np.random.rand(N, 3)*[100.0, -300.0, 100.0], 'rotation_angle': np.random.uniform(0.0, 2*np.pi, (N,))} if model_params['props']['ei'] == 'e': cell_props['tuning_angle'] = np.linspace(0, 360.0, N, endpoint=False) else: cell_props['tuning_angle'] = ['NA']*N cell_props.update(model_params['props']) net.add_nodes(N=N, pop_name=name, location='VisL4', **cell_props)
import numpy as np import math import random from bmtk.builder.networks import NetworkBuilder from bmtk.builder.aux.node_params import positions_columinar, xiter_random from bmtk.builder.aux.edge_connectors import distance_connector net = NetworkBuilder("V1") net.add_nodes(N=80, pop_name='Scnn1a', positions=positions_columinar(N=80, center=[0, 50.0, 0], max_radius=30.0, height=100.0), rotation_angle_yaxis=xiter_random(N=80, min_x=0.0, max_x=2*np.pi), rotation_angle_zaxis=xiter_random(N=80, min_x=0.0, max_x=2*np.pi), tuning_angle=np.linspace(start=0.0, stop=360.0, num=80, endpoint=False), location='L4', ei='e', level_of_detail='biophysical', params_file='472363762_fit.json', morphology_file='Scnn1a.swc', set_params_function='Biophys1') net.add_nodes(N=20, pop_name='PV', positions=positions_columinar(N=20, center=[0, 50.0, 0], max_radius=30.0, height=100.0), rotation_angle_yaxis=xiter_random(N=20, min_x=0.0, max_x=2*np.pi), rotation_angle_zaxis=xiter_random(N=20, min_x=0.0, max_x=2*np.pi), location='L4', ei='i', level_of_detail='biophysical', params_file='472912177_fit.json', morphology_file='Pvalb.swc', set_params_function='Biophys1')
from bmtk.builder.networks import NetworkBuilder # First thing is to create a network builder object net = NetworkBuilder('mcortex') net.add_nodes(cell_name='Scnn1a_473845048', potental='exc', model_type='biophysical', model_template='ctdb:Biophys1.hoc', model_processing='aibs_perisomatic', dynamics_params='472363762_fit.json', morphology='Scnn1a_473845048_m.swc') net.build() net.save_nodes(output_dir='network')
from bmtk.builder.networks import NetworkBuilder cortex = NetworkBuilder('mcortex') cortex.add_nodes(cell_name='Scnn1a', potental='exc', level_of_detail='biophysical', params_file='472363762_fit.json', morphology_file='Scnn1a.swc', set_params_function='Biophys1') cortex.build() cortex.save_nodes(output_dir='network') thalamus = NetworkBuilder('mthalamus') thalamus.add_nodes(N=10, pop_name='tON', potential='exc', level_of_detail='filter') thalamus.add_edges(source={'pop_name': 'tON'}, target=cortex.nodes(), connection_rule=5, weight_max=5e-05, weight_function='wmax', distance_range=[0.0, 150.0], target_sections=['basal', 'apical'], delay=2.0, params_file='AMPA_ExcToExc.json', set_params_function='exp2syn') thalamus.build()
from bmtk.builder.networks import NetworkBuilder net = NetworkBuilder("biophysical") net.add_nodes(N=1, pop_name='Pyrc', potental='exc', model_type='biophysical', model_template='hoc:L5PCtemplate', morphology=None) net.build() net.save_nodes(output_dir='network') from bmtk.utils.sim_setup import build_env_bionet build_env_bionet( base_dir='./', # Where to save the scripts and config files components_dir='../biophys_components', network_dir='./network', # Location of directory containing network files tstop=3000.0, dt=0.1, # Run a simulation for 2000 ms at 0.1 ms intervals report_vars=['v'], #clamp_reports=["se"], # Tells simulator we want to record membrane potential and calcium traces current_clamp={ # Creates a step current from 500.ms to 1500.0 ms 'amp': 0.793, #'amp': 0.346, 'delay': 700, 'duration': 2000, 'gids': "all" }, spikes_threshold=-10,
import numpy as np from bmtk.builder.networks import NetworkBuilder import math import random random.seed(42) output_dir='network' ####################################################################### ##################### Create the cells ################################ ####################################################################### print("\nCreating Cells") # Build the main network net = NetworkBuilder('LUT') # Specify number of cells in each population # numBladaff = 10 numEUSaff = 10 numPAGaff = 10 numIND = 10 numHypo = 10 numINmplus = 10 numINmminus = 10 numPGN = 10 numFB = 10 numIMG = 10 numMPG = 10 numEUSmn = 10 numBladmn = 10
from bmtk.builder.networks import NetworkBuilder # First thing is to create a network builder object net = NetworkBuilder('mcortex') net.add_nodes( cell_name='Scnn1a', # positions=[(0.0, 0.0, 0.0)], potental='exc', level_of_detail='biophysical', params_file='472363762_fit.json', morphology_file='Scnn1a.swc', set_params_function='Biophys1') net.build() net.save_nodes(output_dir='network')
from bmtk.builder.networks import NetworkBuilder from bmtk.builder.auxi.node_params import positions_columinar, xiter_random from bmtk.builder.auxi.edge_connectors import distance_connector import math import numpy as np import random cortex = NetworkBuilder('mcortex') cortex.add_nodes(N=100, pop_name='Scnn1a', positions=positions_columinar(N=100, center=[0, 50.0, 0], max_radius=30.0, height=100.0), rotation_angle_yaxis=xiter_random(N=100, min_x=0.0, max_x=2*np.pi), rotation_angle_zaxis=3.646878266, potental='exc', model_type='biophysical', model_template='ctdb:Biophys1.hoc', model_processing='aibs_perisomatic', dynamics_params='472363762_fit.json', morphology='Scnn1a_473845048_m.swc') cortex.add_edges(source={'pop_name': 'Scnn1a'}, target={'pop_name': 'Scnn1a'}, connection_rule=distance_connector, connection_params={'d_weight_min': 0.0, 'd_weight_max': 0.34, 'd_max': 50.0, 'nsyn_min': 0, 'nsyn_max': 10}, syn_weight=2.0e-04, distance_range=[30.0, 150.0], target_sections=['basal', 'apical', 'soma'], delay=2.0, dynamics_params='AMPA_ExcToExc.json', model_template='exp2syn')
'location': 'LGN', 'level_of_detail': 'filter', 'pop_name': 'tOFF', 'pop_id': 'tOFF_001' }, 'tONOFF_001': { 'N': len(positions_table['tONOFF_001']), 'ei': 'e', 'location': 'LGN', 'level_of_detail': 'filter', 'pop_name': 'tONOFF', 'pop_id': 'tONOFF_001' } } lgn_net = NetworkBuilder('LGN') xcoords = [] ycoords = [] for model_name, model_params in cell_models.items(): positions = positions_table[model_name] xcoords += [p[0] for p in positions] ycoords += [p[1] for p in positions] tuning_angles = [calc_tuning_angle(o) for o in offset_table[model_name]] lgn_net.add_nodes(model_params['N'], position=positions, tuning_angle=tuning_angles, ei=model_params['ei'], location=model_params['location'], level_of_detail=model_params['level_of_detail'], pop_name=model_params['pop_name'],