def plot_true_clusters(): for k in range(K): c = k % len(GaussViz.Colors) GaussViz.plotGauss2DContour( mus[k], sigmas[k], color=GaussViz.Colors[c])
def _viz_Gauss_before_after( curModel=None, propModel=None, curSS=None, propSS=None, Plan=None, propLscore=None, curLscore=None, Data_b=None, Data_t=None, **kwargs): pylab.subplots( nrows=1, ncols=2, figsize=(8, 4), num=1) h1 = pylab.subplot(1, 2, 1) h1.clear() GaussViz.plotGauss2DFromHModel( curModel, compsToHighlight=Plan['btargetCompID'], figH=h1) if curLscore is not None: pylab.title('%.4f' % (curLscore)) h2 = pylab.subplot(1, 2, 2, sharex=h1, sharey=h1) h2.clear() newCompIDs = np.arange(curModel.obsModel.K, propModel.obsModel.K) GaussViz.plotGauss2DFromHModel( propModel, compsToHighlight=newCompIDs, figH=h2, Data=Data_t) if propLscore is not None: pylab.title('%.4f' % (propLscore)) Lgain = propLscore - curLscore if Lgain > 0: pylab.xlabel('ACCEPT +%.2f' % (Lgain)) else: pylab.xlabel('REJECT %.2f' % (Lgain)) pylab.draw() pylab.subplots_adjust(hspace=0.1, top=0.9, bottom=0.15, left=0.15, right=0.95)
def plot_true_clusters(): from bnpy.viz import GaussViz for k in range(K): c = k % len(GaussViz.Colors) GaussViz.plotGauss2DContour(Mu[k], Sigma[k], color=GaussViz.Colors[c])
def plot_true_clusters(): from bnpy.viz import GaussViz for k in range(K): c = k % len(GaussViz.Colors) GaussViz.plotGauss2DContour( Mu[k], Sigma[k], color=GaussViz.Colors[c] )