def test_run_pipeline_saver(self): reduced_features = RecursiveFeatureElimination(n_features=1) pipeline = Pipeline('name_pipeline', [ reduced_features, PipelineSaver('dim_reduction', 'dim_reduction') ]) pipeline.fit(self.X) pipeline.save('/tmp/test_rfe_pipeline_saver') loaded_pipeline = Pipeline( 'name_pipeline', [PipelineLoader('dim_reduction', 'dim_reduction')]) loaded_pipeline.load('/tmp/test_rfe_pipeline_saver') Y = loaded_pipeline.run(self.X) np.testing.assert_equal( Y['features'], np.array(([[0.2], [0.1], [0.1], [0.2], [0.9], [0.8]]))) np.testing.assert_equal(Y['labels'], np.array([0, 0, 0, 0, 1, 1])) np.testing.assert_equal(Y['access_ids'], np.array([0, 0, 1, 1, 2, 2])) np.testing.assert_equal(Y['indices'], np.array( [2])) # indices of the selected features
# * you can use on the same list labels (e.g 'replay-attack', 'replay-mobile', etc) and bob.gradiant.core.Database classes. e.g databases_list = [ MyDatabase('path/to/database'), 'replay-mobile'] # * databases paths must be defined as a environment variables. (REPLAY_ATTACK_PATH, REPLAY_MOBILE_PATH, MSU_MFSD_PATH, OULU_NPU_PATH) #os.environ['REPLAY_ATTACK_PATH'] = '<path-to-database>' (if not defined) #os.environ['REPLAY_MOBILE_PATH'] = '<path-to-database>' (if not defined) #os.environ['MSU_MFSD_PATH'] = '<path-to-database>' (if not defined) #os.environ['OULU_NPU_PATH'] = '<path-to-database>' (if not defined) databases_list = ['oulu-npu'] protocols_list = ['grandtest'] #Feature extraction: from bob.chapter.hobpad2.facepadprotocols import IqmFeaturesExtractor feature_extractor = IqmFeaturesExtractor() #Pipeline: from bob.gradiant.pipelines import Pipeline, AverageScoreFusion pipeline = Pipeline('iqm_from_scores_pretrained', [AverageScoreFusion()]) #Result base path: result_path = 'result/iqm_from_scores_pretrained' #Framerate and time parameters: framerate_list = [5, 10, 15, 20, 25] total_time_acquisition_list = [500, 1000, 1500, 2000] #----------------------------------------------------------------- #OPTIONAL ARGUMENTS: #Verbose (only True/False are valid): verbose = True
# Configuration file automatically generated at 2017-12-29 #----------------------------------------------------------------- #REQUIRED ARGUMENTS: #Database and protocol: databases_list = ['oulu-npu'] protocols_list = ['grandtest'] #Feature extraction: from bob.chapter.hobpad2.facepadprotocols import IqmFeaturesExtractor feature_extractor = IqmFeaturesExtractor() #Pipeline: from bob.gradiant.pipelines import Pipeline, AverageScoreFusion pipeline = Pipeline('gradiant_from_scores_pretrained',[AverageScoreFusion()]) #Result base path: result_path = 'result/gradiant_from_scores_pretrained' #Framerate and time parameters: framerate_list = [5, 10, 15, 20, 25] total_time_acquisition_list = [500, 1000, 1500, 2000] #----------------------------------------------------------------- #OPTIONAL ARGUMENTS: #Verbose (only True/False are valid): verbose = True
# Configuration file automatically generated at 2017-12-29 #----------------------------------------------------------------- #REQUIRED ARGUMENTS: #Database and protocol: databases_list = ['oulu-npu'] protocols_list = ['grandtest'] #Feature extraction: from bob.chapter.hobpad2.facepadprotocols import IqmFeaturesExtractor feature_extractor = IqmFeaturesExtractor() #Pipeline: from bob.gradiant.pipelines import Pipeline, AverageScoreFusion pipeline = Pipeline('gradiant_from_scores', [AverageScoreFusion()]) #Result base path: result_path = 'result/gradiant_from_scores' #Framerate and time parameters: framerate_list = [5, 10, 15, 20, 25] total_time_acquisition_list = [500, 1000, 1500, 2000] #----------------------------------------------------------------- #OPTIONAL ARGUMENTS: #Verbose (only True/False are valid): verbose = True
os.path.abspath(os.path.dirname(__file__)), 'database_paths.json') # Database and protocol: databases_list = ['aggregate-database'] protocols_list = ['grandtest'] # Feature extraction: from bob.gradiant.pad.evaluator import DummyFeaturesExtractor feature_extractor = DummyFeaturesExtractor() # Pipeline: from bob.gradiant.pipelines import Pipeline, Pca, LinearSvc pipeline = Pipeline( 'pipeline_pca095_linear_svc', [Pca(name='Pca', n_components=0.95), LinearSvc(name='LinearSvc')]) # Result base path: result_path = 'result' # Framerate and time parameters: framerate_list = [10, 15] total_time_acquisition_list = [500, 1000] # ----------------------------------------------------------------- # OPTIONAL ARGUMENTS: # Verbose (only True/False are valid): verbose = True